

A Developer’s Guide to Building
Resilient Cloud Applications
with Azure

Deploy applications on serverless and event-driven
architecture using a cloud database

Hamida Rebai Trabelsi

BIRMINGHAM—MUMBAI

A Developer’s Guide to Building Resilient Cloud
Applications with Azure

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Group Product Manager: Rahul Nair
Publishing Product Manager: Surbhi Suman
Senior Editor: Divya Vijayan/Romy Dias
Technical Editor: Arjun Varma
Copy Editor: Safis Editing
Project Coordinator: Ashwin Kharwa
Proofreader: Safis Editing
Indexer: Hemangini Bari
Production Designer: Aparna Bhagat
Marketing Coordinator: Nimisha Dua

First published: January 2023

Production reference: 1250123

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80461-171-5

https://www.packtpub.com

https://www.packtpub.com

To my mother, Rafika Boukari, and to the memory of my father, Mongi Rebai, for their sacrifices, their
blessings, and the constant support that they have given to me. To my husband, Mohamed Trabelsi,

for supporting me during my writing journey. To my son, Rayen Trabelsi, and my baby daughter, Eya
Trabelsi, for their smiles every day, which always keep me motivated.

Foreword

On March 11, 2020, the World Health Organization officially declared a pandemic amid a global
COVID-19 outbreak. As the world went into lockdown, it was imperative that businesses pivot and
leverage innovative ways to continue their operations. We witnessed organizations employing creative
techniques across a variety of industries. Many retail businesses provided online ordering and curbside
pick-up when they were required to close their doors or limit the number of customers in-store.

When grocery store shelves were barren and struggling to restock, restaurants also leveraged their
direct suppliers to offer grocery kits including produce, dairy, and raw meats to their customers. Fitness
studios offered online virtual classes to keep their members active and engaged. Doctors provided
online virtual appointments for their patients. Offices that traditionally required employees to be
on-site transitioned to enable remote work using collaboration tools such as Microsoft Teams. What
did they all have in common? They leveraged cloud services.

In his first earnings call during the pandemic, Satya Nadella, CEO of Microsoft, stated, “We’ve seen
two years of digital transformation in two months.” Enabling remote work, accelerating the digital
transformation to the cloud, and building innovative solutions allowed organizations to not only
survive but also thrive.

Three years later, the world has slowly gone back to a new normal – a hybrid world partaking in
experiences online as well as in person. Yet, organizations are not slowing down. They are accelerating
their digital transformation and application modernization initiatives. Gartner predicts that cloud
spending will continue to increase through to 2025, with enterprise organizations continuing to invest
in their shift to the cloud. I see this firsthand in my day-to-day work in leading a team of cloud solution
architects that helps organizations to modernize and innovate in Azure.

What does this mean for you, whether you’re an architect, developer, student, or aspiring technologist? As
the demand for cloud-native skills continues to grow, now is the time to learn these crucial development
skills, or risk getting left behind. A simple search for “cloud native” jobs on LinkedIn yields thousands
of results. This is an in-demand skill that serves as a career accelerator. You have taken the first step
by buying Hamida’s book, which is a wise investment on your part.

Hamida draws on years of experience in developing cloud-native solutions in Azure and has distilled
her expertise for you here. This is a comprehensive resource that goes beyond the question “what is
cloud-native application development?” This is not another book on containers and orchestration
services. Hamida provides you with the “how-to.” She delivers the roadmap to build an end-to-end
cloud-native application, from development to deployment.

You will walk away ready to put into practice everything that you learn within these pages. You will
gain a deeper understanding of which cloud service to use, why, and how it all comes together to
create and deploy a scalable, reliable, highly available application.

Good luck on your journey!

Lori Lalonde

Senior Cloud Solution Architect Manager, Microsoft

Contributors

About the author
Hamida Rebai Trabelsi has been working in the computing domain for over 12 years. She started
her professional career in Tunisia working for multinational corporations (MNCs) as a software
developer, then served as a .NET consultant at CGI, Canada. She is currently a senior advisor and
information and solution integration architect at Revenu Québec, Canada. She has been awarded as
Most Valuable Professional in Developer Technologies and Microsoft DevHeros by Microsoft and
holds several Azure certifications. Besides being a Microsoft Certified Trainer and a member of the
.NET Foundation, Hamida is a blogger, an international speaker, and one of the finalists in the Women
in IT Award in Canada in 2019.

I have been overwhelmed by the support that I have received from all of the team. They encouraged
me during this period, and I feel proud that I was able to finish this book and share my experience as
a developer to start with Azure. To the memory of my father, Mongi Rebai, I offer this book to you
and I hope that you were with me, sharing in this new adventure that is added to my professional
career. Thank you to my mum, Rafika Boukari, for your sacrifices and your support. Thank you to
my husband, Mohamed Trabelsi, for believing in me. Every day, I wake up and see my son, Rayen
Trabelsi, and my baby girl, Eya Trabelsi, and I feel more motivated, so thank you for this energy.

About the reviewers
Ryan Mangan is a cloud and an end user computing technologist focusing on application migration
and modernization. He's an international speaker on a wide range of topics, an author, and has helped
customers and technical communities over the past decade. Ryan is a chartered fellow of the British
Computer Society, a Microsoft Most Valuable Professional (MVP), as well as a VMware vExpert,
and Very Important Parallels Professional (VIPP).

Stefano Demiliani is a Microsoft MVP in business applications, a Microsoft Certified Solution
Developer (MCSD), an Azure Certified Architect, and an expert in other Microsoft-related technologies.
His main activity is architecting and developing enterprise solutions based on the entire stack of
Microsoft technologies (mainly focused on ERP and the cloud). He has worked with Packt Publishing
on many IT books related to Azure cloud applications and Dynamics 365 Business Central and is a
speaker at conferences around Europe. You can reach him on Twitter (@demiliani) or LinkedIn.

Preface xv

Part 1: Building Cloud-Oriented Apps Using
Patterns and Technologies

1
Introduction to Serverless Architecture, Event-Driven Architecture,
and Cloud Databases 3

Understanding serverless architecture 4
API definition 4
The API life cycle 5
Role of an API 5
API types 5

Understanding event-driven
architecture 6
Exploring cloud databases 8
Summary 9
Further reading 9
Questions 9

2
API Management – Import, Manage, and Publish Your First API 11

Technical requirements 11
The API Gateway pattern 12
Definition 12
Use case 13

Exploring the API Management
service 14
API Management components 14
Products 20

Securing the API 24
Subscriptions and keys 24
The process of calling an API with the
subscription key 25
Securing APIs by using certificates 25
Accepting client certificates in the
consumption tier 26
Certificate authorization policies 26

Table of Contents

Table of Contentsx

Exercise 1 – creating a backend API
and deploying APIs 27
Creating an API Management instance 27
Importing an API 31
Configuring the backend settings 36

Testing the API 38

Exercise 2 – using Azure API
Management to proxy a public API 39
Importing an OpenAPI schema for proxying 39

Summary 40

3
Developing Event-Based and Message-Based Solutions 41

Introduction 41
Exploring Event Grid and Azure
Event Hubs 43
Event Grid 43
Event Hubs 44

Exercise 1 – publishing and
subscribing from a .NET app to Event
Grid events 44
Creating an Event Grid topic 45
Creating a web app to deploy the Azure Event
Grid viewer 46
Creating an Event Grid subscription 47
Create a .NET Console project 50
Making some modifications to the Program
class to be able to connect to Event Grid 52
Publishing new events 53

Exploring Azure message queues 56

Exercise 2 – creating an Azure
Service Bus namespace and a queue 56
Using the Azure portal 56
Using the Azure CLI 60

Exercise 3 – publishing messages to a
Service Bus queue using a .NET Core
application 61
Exercise 4 – reading messages from a
Service Bus queue using a .NET Core
application 66
Exercise 5 – sending and receiving
messages to and from a topic 69
Creating a topic using the Azure portal 69
Creating a subscription to the topic 70
Sending messages to the topic 71

Summary 76
Question 76

Part 2: Connecting Your Application with Azure
Databases

4
Creating and Deploying a Function App in Azure 79

Exploring Azure Functions 79 Triggers 80

Table of Contents xi

Bindings 81
Order processing scenario using Azure
Functions 81

Developing Azure functions 82
Azure Functions’ development 82
Creating an Azure Functions instance by
using Visual Studio 2022 83
Creating an Azure Functions instance by
using Visual Studio Code 92
Creating an Azure Functions app in the
Azure portal 94

Developing durable functions 101
Introduction to durable functions 101
Implementing an orchestrator function 102
Function chaining 103
Fan-out, fan-in 104
Asynchronous HTTP APIs 104
Monitor pattern 105
Human interaction 106

Summary 106
Questions 106

5
Develop an Azure Service Fabric Distributed Application 107

Exploring Azure Service Fabric 108
Definition 109
Clusters and nodes 110
The differences between Service Fabric and
Kubernetes 111

The Azure Service Fabric
development environment 111
Exercise 1 – creating a Service Fabric
cluster using the Azure portal 115
Exercise 2 – creating a Service Fabric cluster
using the Azure CLI 120

Exercise 3 – scaling an Azure Service
Fabric cluster 121
Manual scaling 121
Custom autoscaling 123

Coding your scaling 124

Exercise 4 – creating a .NET Service
Fabric application 124
Creating a Service Fabric application 125
Deploying the application in a local cluster
using Visual Studio 129

Exercise 5 – deploying an app to a
Service Fabric managed cluster and
containers 130
Deploying an ASP.NET Core application to
Azure Service Fabric 131
Building and executing a Docker container in
Service Fabric 132

Summary 134
Questions 134

Table of Contentsxii

6
Introduction to Application Data 135

An overview of data classification
and data concepts 135
Exploring relational data concepts in
Azure 136
Exploring non-relational data
concepts in Azure 138
Exploring modern data warehouse
analytics 139

Exploring data warehousing concepts 139
Azure data services for modern data
warehouses 140

Getting started building with Power
BI 141
Power BI Desktop 141

Summary 142

7
Working with Azure SQL Database 143

Exploring PaaS options for deploying
SQL Server in Azure 143
Azure SQL Database 144
Azure SQL Managed Instance 144
Creating an Azure SQL Database instance 145

Exercise 1 – deploying a single SQL
database 146
Exercise 2 – deploying Azure SQL
Database elastic pools 152

Exercise 3 – deploying SQL Managed
Instance 155
Exercise 4 – connecting Azure SQL
Database to
an ASP.NET app 156
Creating and configuring the database
connection 156

Summary 159
Further reading 160
Questions 160

8
Working with Azure Storage 161

Azure Storage account 161
Exploring Azure Table Storage 164
Creating a table in Azure Table Storage in the
Azure portal 166

Exploring Azure Blob Storage 169
Azure Blob Storage client library for .NET 177

Exploring Azure Disk Storage 179

Table of Contents xiii

Exploring Azure Files 180
The common uses of file storage 180
Adding Azure Files in the Azure portal 180
When to use Azure files versus blobs 183

Summary 184
Further reading 184
Questions 184

9
Working with Azure Cosmos DB to Manage Database Services 185

NoSQL databases 185
Exercise 1 – creating an Azure
Cosmos DB account using the Azure
portal 187
Exploring the Cosmos DB SQL API 192
Exercise 2 – creating an Azure
Cosmos DB SQL API account 193
Adding a new database and a new container 193

Adding data to a database 196
Querying data 197

Exercise 3 – connecting to the Azure
Cosmos DB SQL API with the SDK 200
Exercise 3 – connecting Azure App
Service with Azure Cosmos DB 205
Summary 210
Questions 210

10
Big Data Storage Overview 211

Exploring Azure Data Lake Storage 211
Creating an Azure Data Lake instance using
the Azure portal 214
Creating an Azure Data Lake instance using
the Azure CLI 215

Exploring Azure Data Factory 217
ADF components 218
Creating an ADF using the Azure portal 219

Exploring Azure Databricks 229
Azure Synapse Analytics 229

Azure Databricks features 229
Azure Databricks components 230
Creating an Azure Databricks workspace 230

Exploring Azure Synapse Analytics 235
Exploring Azure Analysis Services 235
Summary 236
Further reading 236
Questions 236

Table of Contentsxiv

Part 3: Ensuring Continuous Integration and
Continuous Container Deployment on Azure

11
Containers and Continuous Deployment on Azure 239

Setting up continuous deployment
for Docker with Azure DevOps and
Azure Container Registry 239
Creating the pipeline 240

Continuous deployment for
Windows containers with Azure
DevOps 244

Deploying to Azure Container Registry 245
Deploying to Azure App Service 249

Integrating Docker Hub with the CI/
CD pipeline 254
Summary 258

Assessments 259

Index 263

Other Books You May Enjoy 272

Preface

Azure is a Microsoft public cloud computing provider. It provides a range of cloud services including
compute, network, storage, and analytics. Users will continue their journey in building cloud-oriented
applications using serverless and event-driven technologies in Azure. , they will integrate their
application with relational or non-relational databases and use Database-as-a-Service in Azure and
build a CI/CD pipeline with Docker containers on Azure.

To remain competitive in the market and deliver software at a faster rate and reduced cost, companies
with stable, legacy systems and growing volumes of data are modernizing their applications and
accelerating innovation. However, many businesses struggle to meet modernization demands. This
book will help you to build secure and reliable cloud-based applications on Azure using examples,
and show you how to connect them to databases in order to overcome the application modernization
challenges. The book will walk you through the different services in Azure, namely, Azure API
Management using the gateway pattern, event-driven architecture, Event Grid, Azure Event Hubs,
Azure message queues, Function-as-a-Service using Azure Functions, and the database-oriented
cloud. At every step along the way, you’ll learn about creating, importing, and managing APIs and
Service Fabric in Azure, and how to ensure continuous integration and deployment in Azure to fully
automate the software delivery process (the build and release process).

Who this book is for
This book is for cloud developers, software architects, system administrators, DBAs, data engineers,
developers, and computer science students looking to understand the new role of software architects
or developers in the cloud world. Professionals looking to enhance their cloud and cloud-native
programming concepts will also find this book useful.

What this book covers
Chapter 1, Introduction to Serverless Architecture, Event-Driven Architecture, and Cloud Databases,
covers the definition of serverless architecture, and the definition, life cycle, types, and roles of APIs
inside an application and their ecosystem. This chapter covers also event-driven architecture and the
database-oriented cloud.

Chapter 2, API Management – Import, Manage, and Publish Your First API, covers the different features
of Azure API Management and defines the API gateway pattern. This chapter covers also API security.

Prefacexvi

Chapter 3, Developing Event-Based and Message-Based Solutions, covers event-based and message-
based solutions. This chapter describes Event Grid, Azure Event Hubs, and Service Bus Queue and
Topic. We will use a .NET application to send and receive messages to Service Bus Queue or Topic,
and we will publish and subscribe events to Event Grid events using .NET application .

Chapter 4, Creating and Deploying a Function App in Azure, covers the basic concepts of Azure
Functions and their hosting plan options, and the development of Azure Functions. This chapter also
covers Durable Functions.

Chapter 5, Develop an Azure Service Fabric Distributed Application, covers the essential concepts of
Azure Service Fabric, the main benefits, and Service Fabric application deployment locally or remotely
to the cloud.

Chapter 6, Introduction to Application Data, covers data classification, data concepts, and the different
concepts of relational and non-relational data in Azure. This chapter also covers modern data
warehouse analytics.

Chapter 7, Working with Azure SQL Database, covers the provisioning and deployment of Azure SQL
Database and Azure SQL Managed Instance. This chapter discusses the deployment of a single SQL
database, database elastic pool, and SQL Managed instance. In this chapter, we will connect an Azure
SQL database to an ASP.NET application.

Chapter 8, Working with Azure Storage, covers the different storage options that are available in Azure
Storage services. This chapter discusses Azure storage accounts, including Azure Table storage, Azure
Blob storage, Azure Disk storage, and Azure Files.

Chapter 9, Working with Azure Cosmos DB to Manage Database Services, covers the design and
implementation of cloud-native applications using a multi-model NoSQL database management
system. This chapter discusses Microsoft Azure Cosmos DB.

Chapter 10, Big Data Storage Overview, covers the different solutions for big data storage. This chapter
gives an overview of Azure Data Lake Storage, Azure Data Factory, Azure Data Factory, Azure Synapse
Analytics, and Azure Analysis Services.

Chapter 11, Containers and Continuous Deployment on Azure, covers the continuous integration/
continuous delivery (CI/CD) of containers on Azure. This chapter discusses the setting up of
continuous deployment to produce your container images and orchestration.

 To get the most out of this book
Having a good background in C#, ASP.NET Core, and Visual Studio (any recent version), and a basic
knowledge of cloud computing and databases will be helpful when using this book.

Preface xvii

Most of the examples presenting the solution reference are presented using .NET 6; basic knowledge
in C# and .NET technology is essential to understand the described topics.

We assume that you can install Visual Studio Code as an IDE. Visual Studio 2022 (the Community
Edition) is enough to run the examples if you don’t have access to the commercial license.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Examples are used to explain the use of every Azure service.

Download the example code files
You can download the example code files for this book from GitHub at https://github.
com/PacktPublishing/A-Developer-s-Guide-to-Building-Resilient-
Cloud-Applications-with-Azure. If there’s an update to the code, it will be updated in the
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/LyxAd.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The az
apim create command is used to create the instance.”

https://github.com/PacktPublishing/A-Developer-s-Guide-to-Building-Resilient-Cloud-Applications-with-Azure
https://github.com/PacktPublishing/A-Developer-s-Guide-to-Building-Resilient-Cloud-Applications-with-Azure
https://github.com/PacktPublishing/A-Developer-s-Guide-to-Building-Resilient-Cloud-Applications-with-Azure
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/LyxAd

Prefacexviii

A block of code is set as follows:

var event1= new EventGridEvent(

 subject: $"New Patient: Hamida Rebai",

 eventType: "Patients.Registration.New",

 dataVersion: "1.0",

 data: new

 {

 FullName = "Hamida Rebai",

 Address = "Quebec, G2C0L6"

 }

);

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

dotnet build

Any command-line input or output is written as follows:

Az group create –name packrg –location eastus

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “Select Shared access policies in the
Settings section of the left-hand menu.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata

Preface xix

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read A Developer’s Guide to Building Resilient Cloud Applications with Azure, we’d love
to hear your thoughts! Please click here to go straight to the Amazon review
page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1804611719
https://packt.link/r/1804611719

Prefacexx

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook
purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804611715

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804611715

Part 1:
Building Cloud-Oriented

Apps Using Patterns
and Technologies

In this part of the book, we will introduce the serverless architecture, APIs, event-driven architecture,
and the database-oriented cloud.

This part comprises the following chapters:

• Chapter 1, Introduction to Serverless Architecture, Event-Driven Architecture, and Cloud Databases

• Chapter 2, API Management – Import, Manage, and Publish Your First API

• Chapter 3, Developing Event-Based and Message-Based Solutions

1
Introduction to Serverless

Architecture, Event-Driven
Architecture, and
Cloud Databases

This first chapter introduces the book’s content, which includes the modernization of apps using
application programming interfaces (APIs), event-driven architecture, functions, and Service
Fabric, and connecting them with a database.

Modernization is not just reserved for companies that have been operating stable systems for years
and whose data volume has evolved. Organizations want to remain profitable and not be left behind
by not modernizing technology and taking advantage of changes in the market due to world-changing
factors, such as Covid-19.

Modernization is about accelerating innovation and reducing costs. Modernization is not just about
the app but also the data.

In this chapter, we’re going to cover the following main topics:

• Understanding serverless architecture

• Understanding the role of APIs inside an application and their ecosystem

• Understanding event-driven architecture

• Exploring cloud databases

Introduction to Serverless Architecture, Event-Driven Architecture, and Cloud Databases4

Understanding serverless architecture
Serverless architecture is a software design pattern where applications are hosted by a third-party service,
allowing developers to build and run services without having to manage the underlying infrastructure.

Applications are divided into separate functions that can be called and scaled individually.

Developers implement and deploy application-only code and can run applications, databases, and
storage systems hosted in servers provisioned by cloud providers.

We will understand the role of APIs inside an application and the ecosystem. To start modernizing
legacy applications without any modification, we can use APIs to interact with existing code. These APIs
will run in the cloud, but if we need to add more features to the application to modernize it, we will
encapsulate the data and the functions in services via an API. This encapsulation phase is a technique
that consists of reusing legacy software components. The goal is to keep the code in its environment
and connect it to the new presentations via encapsulation to access the different layers through an
API. APIs permit you to define common protocols (rules) to expose data from an application with
the possibility of decoupling the presentation layer.

Technically, the encapsulation works with wrapper technology, providing a new interface for a legacy
component. This component will be easily accessible from the rest of the software components.

These minimal modifications reduce the risk of destabilizing the application. Even if encapsulation
is a fast, effective, and less expensive solution, it will not solve the present problems related to the
difficulties of maintenance or upgrading.

Because we are talking about the role of APIs in digital transformation and their life cycle, we need
to define them.

API definition

APIs form a bridge between different applications to ensure communication and the exchange of
information between them. They can even define the behavior of these applications.

APIs are considered connectors because they provide the ability for disparate applications to
exchange information.

The information exchanged is generally data; for example, if we make a request in a mobile application,
the data will be sent to a server that performs the reading and then sends back a response in a format
readable in JSON.

Sometimes, microservices are compared with APIs. We often talk about the relationship between APIs
and microservices, but there is also a difference between them. Microservices are a style of architecture
that divides an application into a set of services; each service presents a very particular domain, for
example, an authentication service or another service for the management of the products. On the
other hand, an API is a framework (a structure that you can build software on) used by developers

Understanding serverless architecture 5

to provide interaction with a web application. Alternatively, microservices can use an API to provide
communication between services. But how does an API work?

Applications that send requests are called clients, and applications that send responses are called
servers. Using bees as an example, the hive is the client, the flower is the server, and the bee is the
communication path (REST API requests).

The API life cycle

The API manager – usually the enterprise architect or API product manager – manages the API life cycle.

The API life cycle consists of the following three main phases:

• The creation phase: This consists of creating and documenting the API. There are some key
aspects of API creation to consider; the API will use or reuse backend resources (service or
business capability implementation). These resources are typically available as RESTful services,
Simple Object Access Protocol (SOAP)-based web services, or even Advanced Message
Queuing Protocol (AMQP)-compliant message brokers.

• The control phase: This consists of applying the security policies necessary to ensure that the
exchanges are secure.

• The consumption phase: This consists of publishing the API so that we can consume and
monetize it.

After understanding the API life cycle and the different phases, we will next look at the important
role of an API in terms of communication between applications.

Role of an API

A set of rules ensures the communication of APIs by defining how applications or machines can
communicate, so the API is an intermediate bridge between two applications wanting to communicate
with each other.

API types

A web API is an API that can be accessed via the HTTP protocol. There are many API protocols/
specifications, as follows:

• Open APIs

• Partner APIs

• Internal APIs

• Composite APIs

Introduction to Serverless Architecture, Event-Driven Architecture, and Cloud Databases6

• Representational State Transfer (REST)

• SOAP

• Extensible Markup Language Remote Procedure Call (XML-RPC)

• JavaScript Object Notation Remote Procedure Call (JSON-RPC)

The most popular type of API is RESTful because it has several advantages in terms of flexibility
when creating an API that meets the client’s needs and dependencies because the data is not bound
to methods or resources. A RESTful API supports different data formats, such as application/
json, application/xml, application/x-wbe+xml, multipart/form-data,
and application/x-www-form-urlencoded.

RESTful APIs take advantage of existing protocols – for example, web APIs take advantage of the
HTTP protocol.

So far, in this chapter, we have talked about encapsulation to access the different layers through an
API as a technique used for legacy system modernization. We have presented the API life cycle and
API roles, which encompasses several roles to ensure communication, and we have identified the
API types, such as RESTful APIs, which are the most popular. In the next section, we will present the
event-driven architecture used to improve agility in complex applications.

Understanding event-driven architecture
Event-driven architecture is a software architecture that uses events in order to be able to communicate
between decoupled services. It is a pattern for designing applications that are loosely coupled and is
used in modern applications built with microservices. When consumers are listening to an event, which
could be a status change or an update, event producers are not able to know which event consumers
are listening to and do not even know the consequences of its occurrence.

In an event-driven architecture, we have the following three key components:

• Event producers: These generate a stream of events

• Event routers: These manage event delivery between producers and consumers

• Event consumers: These listen to the events

Understanding event-driven architecture 7

The following diagram illustrates these components:

Figure 1.1 – Event-driven architecture

The source of an event is triggered by internal or external inputs. They can be generated by either a
user (by clicking or using keyboard input, for example), an external source (such as a sensor output),
or through a system (such as loading a program).

In an event-driven architecture, we can use event streaming or a publisher/subscriber model. But what
is the difference between event streaming and a publisher/subscriber model?

• Publisher/subscriber model: This provides a framework that enables message exchanges
between publishers and subscribers. This pattern involves the publisher and the subscriber
and depends on a message broker that reroutes messages from the publisher to the subscriber.

• Event streaming: When a stream of events is published to a broker, the clients are able to
subscribe to the stream and join at any time; they have access to them and can consume multiple
preferred streams, and they are able to read from any part and advance their position. The
events are always written in a log file.

Event-driven architectures are recommended to improve agility and move quickly. They are used in
modern applications, mainly microservices, or in any application that includes several decoupled
components. When adopting an event-driven architecture, you may need to rethink how you view
your application design.

In this section, we have explored event-driven architecture and the different key components.

Introduction to Serverless Architecture, Event-Driven Architecture, and Cloud Databases8

Exploring cloud databases
A cloud database is a database service created and accessed through a cloud platform.

A cloud database is a collection of information, structured or unstructured, that is hosted in a private,
public, or hybrid cloud computing infrastructure platform. There is no structural or conceptual
difference between a cloud or on-premises database, it’s just the location that’s different.

Cloud databases are divided into two broad categories: relational and non-relational.

As in the case of databases with traditional ancestors, we have the same definition for a relational
database, which is written in Structured Query Language (SQL). It is composed of tables organized
in rows and columns with relationships between them, called fields. This relationship is specified in
a data schema.

Non-relational databases, also called NoSQL, use a different storage concept based on documents.
They do not use a table model to store content as in the traditional approach; they use a single
document instead.

A non-relational database is recommended for unstructured data – for example, for social media
content, photos, or video storage. There are two models of cloud database environments: traditional
(which we discussed earlier) and database as a service (DBaaS).

For the first case, we can host a virtual machine, install the cloud database management system
(DBMS), and the database runs on this machine, so the management and monitoring of the database
are managed by the organization. On the other hand, the DBaaS model is a paid subscription service
in which the database runs on the physical infrastructure of the cloud service provider.

Azure offers a set of fully managed relational, NoSQL, and in-memory databases:

• Azure SQL Database: This is used for applications that scale with intelligent, managed SQL
databases in the cloud

• Azure SQL Managed Instance: This is used to modernize your SQL Server applications with
a managed, always up-to-date SQL instance in the cloud

• SQL Server on Azure Virtual Machines: This is used to migrate SQL workloads to Azure while
maintaining full SQL Server compatibility and OS-level access

• Azure Database for PostgreSQL: This is used to build scalable, secure, fully managed enterprise-
grade applications using open source PostgreSQL, scale PostgreSQL with single-node and high
performance, or move your PostgreSQL and Oracle workloads to the cloud

• Azure Database for MySQL: This used to provide high availability and elastic scaling for your
open source mobile and web apps with the managed community MySQL database service or
move your MySQL workloads to the cloud

Summary 9

• Azure Database for MariaDB: This is used to build applications anywhere with guaranteed
low latency and high availability at any scale, or move Cassandra, MongoDB, and other NoSQL
workloads to the cloud

• Azure Cache for Redis: This is used to run fast and scalable applications with open source
compatible in-memory data storage

• Azure Database Migration Service: This is used to accelerate your move to the cloud with a
simple, self-paced migration process

• Azure Managed Instance for Apache Cassandra: This is used to modernize existing Cassandra
data clusters and apps and enjoy flexibility and freedom with the Managed Instance service

Summary
If you are building a new application or are in the process of modernizing a legacy application, you
need to understand these architectures: serverless architecture, APIs, and event-driven architecture.
These architectural patterns are critically important to master.

This chapter was about serverless architecture, API definition, types, life cycles, communication
between applications or machines, event-driven architecture, and cloud databases.

In the next chapter, you will learn how to deploy web APIs and the explore function of the API
management service.

Further reading
If you need more information about serverless architecture, you can check out this link: https://
azure.microsoft.com/resources/cloud-computing-dictionary/what-is-
serverless-computing/ and this e-book: https://learn.microsoft.com/dotnet/
architecture/serverless/.

You can check out event-driven architecture documentation at these links: https://learn.
microsoft.com/azure/architecture/guide/architecture-styles/event-
driven and https://learn.microsoft.com/azure/architecture/reference-
architectures/serverless/event-processing.

Questions
1. What are the three key components of event-driven architecture?

2. What are the different Azure database services?

https://azure.microsoft.com/resources/cloud-computing-dictionary/what-is-serverless-computing/
https://azure.microsoft.com/resources/cloud-computing-dictionary/what-is-serverless-computing/
https://azure.microsoft.com/resources/cloud-computing-dictionary/what-is-serverless-computing/
https://learn.microsoft.com/dotnet/architecture/serverless/
https://learn.microsoft.com/dotnet/architecture/serverless/
https://learn.microsoft.com/azure/architecture/guide/architecture-styles/event-driven
https://learn.microsoft.com/azure/architecture/guide/architecture-styles/event-driven
https://learn.microsoft.com/azure/architecture/guide/architecture-styles/event-driven
https://learn.microsoft.com/azure/architecture/reference-architectures/serverless/event-processing
https://learn.microsoft.com/azure/architecture/reference-architectures/serverless/event-processing

2
API Management –

Import, Manage, and Publish
Your First API

In this chapter, we will explore the different features of Azure API Management. We will understand
the API Gateway pattern and the management of API calls. We will also publish the web APIs of the
healthcare solution to Azure API Management, securing the API using subscriptions and certificates
and creating a backend API.

In this chapter, we’re going to cover the following main topics:

• Technical requirements

• The API Gateway pattern

• Exploring the API Management service

• Securing the API

• Exercise 1 – creating a backend API and deploying APIs

• Exercise 2 – using Azure API Management to proxy a public API

Technical requirements
Before you start exploring our solution, you will need a code editor for C#. Microsoft offers code
editors and integrated development environments (IDEs), such as the following:

• Visual Studio Code for Windows, macOS, or Linux

• Visual Studio 2022 for Windows

• Visual Studio 2022 for Linux

• GitHub Codespaces

API Management – Import, Manage, and Publish Your First API12

As a prerequisite, we need an Azure account where we are able to deploy our APIs on Azure App
Service and Azure API Management.

The healthcare solution presented in this chapter uses the .NET 6 framework.

The GitHub repository for this book has solutions using full application projects related to the healthcare
domain, and they will be used in the next chapters:

https://github.com/didourebai/developerGuideForCloudApps

The API Gateway pattern
When developing applications based on complex or large microservices established on multiple client
applications, it is recommended to use the API Gateway pattern.

Definition

The API Gateway pattern is an integration pattern for clients that communicate with a system service,
designed to provide a single abstraction layer between the underlying services and the customer’s
needs. This is the single entry point for all clients. It is similar to the Façade pattern of object-oriented
programming (OOP) design, but in this case, it’s part of a distributed system.

The API Gateway pattern is often referred to as Backend for Frontend because its implementation is
based on the needs of the client application. The pattern provides a reverse proxy whose purpose is
to redirect or route client requests to internal microservices endpoints.

When should you consider using the API Gateway pattern? The following list specifies when it is suitable:

• A synchronous response is issued by the system making the call

• Dependencies between microservices are manageable and do not change over time

• No latency requirement; there will be no critical issues if there are slow responses

• There is a need to expose an API for the purpose of performing data collection from
various microservices

After defining the API Gateway pattern, we will discover, in the next section, the use case that we will
use during this chapter.

https://github.com/didourebai/developerGuideForCloudApps

The API Gateway pattern 13

Use case

Let’s start by looking at a problem relating to the direct communication between the client app and
microservices. The following figure shows our solution, which contains several frontend and backend
services that are directly interacting with the client applications.

In our scenarios, the client apps must send requests directly to the microservices. How does the client
know which endpoints to call? What happens if we introduce a new service, for example, or if we
decide to make a change and refactor an existing service?

How do services handle authentication or Secure Sockets Layer (SSL) termination, data transformations,
and dynamic request dispatching?

How can client apps communicate with services that use different protocols? There are some potential
problems when we expose services directly to clients:

• The client must track multiple endpoints that have been implemented to ensure resilient fault
handling, resulting in a complex client code implementation.

• Coupling between the client and backend. This makes it more difficult to maintain the client
and also more difficult to refactor services.

Figure 2.1 – Scenario using a direct client-to-microservice communication architecture

All these challenges can be resolved by implementing API Gateway pattern to decouple clients from
services because having an intermediate level or tier of indirection (gateway) can be convenient for
microservices-based applications. The API gateway sits between the client apps and the microservices.

API Management – Import, Manage, and Publish Your First API14

The following figure shows a simplified architecture based on microservices and interaction with
customers through the integration of a custom API gateway:

Figure 2.2 – Scenario using an API gateway implemented as a custom service

Along with the advantages of using the API Gateway pattern, there are a few disadvantages that should
not be overlooked:

• It can be complex to set up because the API gateway is yet another additional part to be developed,
deployed, and managed separately from the microservices and the complete solution.

• There is a possibility of latency during communications. The response time may be slower than
a simplified architecture due to the additional network hop through the API gateway – however,
for most applications, the additional roundtrip is not costly.

Organizations are adopting microservices because of the architecture’s underlying scalability and
flexibility. However, an API gateway is required to fully exploit the benefits of a microservices strategy.
Azure API Management includes an API gateway, and we will explore it in the next section.

Exploring the API Management service
We will describe, in this section, the components of API Management and their functions, and we
will explore the products that use APIs in API Management.

API Management components

Azure API Management is a hybrid, portable, multi-cloud management platform for APIs, providing
as core functionality the assurance of a successful API program through developer engagement,
business insights, analytics, security, and protection. Each API can include one or more operations
and can be added to one or more products.

Exploring the API Management service 15

How can an API be used in API Management?

The use of an API by developers is really simple and interactive. They must subscribe to a product that
includes this API, and then they can call the desired operation of the API by ensuring enforcement
of usage policies that may be in effect.

APIs provide a simplified experience when integrating applications, enabling the reuse and accessibility
of new product and service data on a universal scale.

With the increase of and, above all, the growing dependency on the publication and use of APIs, each
company must manage these APIs as first-rate assets meeting several criteria.

These criteria are the API life cycle; the diversification and complexity of the backend architecture of
API consumers; the protection, acceleration, and observation of the operation of APIs; as well as the
consumption of APIs by the different users and the securing of these hosted services that are in or
outside Azure. All these criteria are supported by Azure API Management.

Azure API Management is made up of the following components:

• API gateway

• Azure portal

• Developer portal

The following diagram presents the different components of Azure API Management:

Figure 2.3 – Azure API Management components

API Management – Import, Manage, and Publish Your First API16

We have explored the different ways to use API Management and its different components. We will
look at the API gateway next.

API gateway

As defined before, the API gateway is the endpoint. It accepts API calls made by developers, and they
will be routed to one or more backends depending on the API’s internal design. A verification of API
keys, JSON Web Tokens (JWTs), certificates, and other credentials are also performed at the endpoint
level. If your API is called without limit, which slows and generates disturbances in the system, the
verification of credentials can also be managed by applying the quotas of use and the limits of flow.
We can perform API transformations on the fly without any code changes to the API gateway.

Metadata will be logged for analysis purposes, as well as backend response caching, where configured.

In the following screenshot, we can see the gateway URL displayed when we create an instance of the
API Management service in Azure:

Figure 2.4 – Gateway URL in Azure API Management

We will start by creating an API Management service using the Azure portal.

Exploring the API Management service 17

The Azure portal

The Azure portal includes more than 200 cloud products and services, and API Management is an
administrative interface where you can configure an API program.

Figure 2.5 – API Management in the Azure portal

Through API Management, we can define or import an API schema, group APIs into products, manage
users, get insights from analytics, or even configure access or consumption policies, such as quotas
or the transformations performed on the APIs.

Developer portal

When we create a new API Management instance, an open source developer portal is automatically
generated. It is used by developers and is a website that can be personalized, including the documentation
of your APIs.

API Management – Import, Manage, and Publish Your First API18

Developers can customize the look of the portal by adding custom content, for example, styling or
even their own branding. We can extend the developer portal further through self-hosting.

Application developers use the open source developer portal to learn about their APIs, read the API
documentation, or try out an API via the interactive console. They can view and invoke operations
and subscribe to products. They are also able to create an account and subscribe to get API keys and
manage them, they can access a dashboard with metrics on their usage. They can also download
API definitions.

The developer portal URL can be found on the Azure portal dashboard for your API Management
service instance.

Figure 2.6 – Developer portal URL

Developers will need to have user accounts in an API Management service instance. The administrator
registers developers or invites a developer to join to register from the developer portal, and each
developer is a member who can belong to one or more groups; they are able to subscribe to products
that are visible to these groups.

To manage user accounts in Azure API Management, follow these steps:

1. Open your Azure API Management instance and select Users under Developer portal.

2. To create a user, select + Add and provide the information required (first name, last name,
email address, ID, and password), as presented in the following screenshot:

Exploring the API Management service 19

Figure 2.7 – Create a new developer in Azure API Management

By default, newly created developer accounts have an active status and are assigned to the Developers
group. An active developer account can be used to access any API to which they have a subscription.

We can invite developers to the developer portal access by sending a notification to them from the
developer portal. Follow these steps to send an invite:

1. In Users under Developer portal, select Invite.

2. Fill in all the information required to invite a user. An email will be sent to the developer. A
customized template can be used for the email. If the user accepts the invitation, the account
will be activated. Note that the invitation link is valid for 48 hours.

Figure 2.8 – Invite a developer

API Management – Import, Manage, and Publish Your First API20

To disable a developer account, in order to block their access to the developer portal or call any APIs,
select Block as presented in Figure 2.9. To reactivate a blocked developer account, select Activate. If
we want to delete an existing active user, we select Delete.

These options are shown in Figure 2.9:

Figure 2.9 – Block or delete a developer account in Azure API Management

A user is associated with a group. A group is used to provide product visibility management for each
developer. API Management has the following immutable system groups:

• Administrators: Azure subscription administrators are members of this group. Administrators
manage the API Management service instance. They create the APIs, operations, and products
used by developers.

• Developers: This group is for authenticated developer portal users who build applications
using APIs. They are allowed to access the developer portal and are able to build applications
that call the operations of an API.

• Guests: Unauthenticated users of the developer portal, such as potential customers visiting the
developer portal of an API Management instance, belong to this group. An administrator can
grant them read-only access, such as the ability to view APIs without calling them.

Administrators can create custom groups or make use of external groups in Azure Active Directory tenants.

Products

Products are one or more APIs in API Management that are configured with a title, a description, and
terms of use with access restrictions: open or protected. The only difference between open and protected
is that protected products must be subscribed to before their use or consumption by developers; open
ones can be used without a subscription. Configuring subscription approval is done at the product
level itself, requiring admin approval or auto approval.

Exploring the API Management service 21

Figure 2.10 – Products in Azure API Management

One of the most powerful API Management features that allow the Azure portal to modify API
behavior through configuration is policies.

Policies present a collection list of statements that can execute sequentially on the request or response
of an API. The most well-known declarations include format conversion from XML to JSON.

Creating and publishing a product

In Azure API Management, a product includes one or more APIs, a usage quota, and terms of service.
Once the product is released, developers can subscribe and start using these APIs.

To create and publish a product, you need to follow these steps:

1. Sign in to the Azure portal and navigate to your API Management instance.

2. In the left navigation pane, select Products; after that, select the + Add button.

API Management – Import, Manage, and Publish Your First API22

3. In the Add product window, fill in the fields, as displayed in the following screenshot, to create
your product:

Figure 2.11 – Add product part 1

If we scroll down the Add product window, we will see what is shown in the following screenshot.
We need to fill in more information and select the checkboxes to define whether the product
can be published or not, and so on:

Exploring the API Management service 23

Figure 2.12 – Add product part 2

If Published is checked, the product will be published, and the APIs in this product can be
called; else, the unpublished product will be visible only to the Administrators group.

If Requires subscription is checked, the user is required to subscribe before using the product
because the product is protected, and a subscription key must be used to access the product’s
APIs; else, the product is open and doesn’t require a subscription key.

If Requires approval is checked, the administrator will review and accept or reject the subscription
attempts to this product, else the subscription attempts will be approved automatically.

Subscription count limit applies a limit to the number of simultaneous subscriptions and
is optional.

Under APIs, we can select one or more APIs to add them to the product to create. It is optional
because you can also add APIs after creating the product.

4. In the end, select Create to create your new product.

Once the new product is created, it can be used by developers or any application.

API Management – Import, Manage, and Publish Your First API24

Securing the API
When publishing APIs via API Management, access to these APIs is secured by using subscription
keys. Developers must include a valid subscription key in HTTP requests when calling an API;
otherwise, these calls will be rejected by the API Management gateway. However, the transmission
to the backend is not ensured.

If a developer wants to consume published APIs, a subscription is required. Developers who want to
consume the published APIs must include a valid subscription key in HTTP requests when calling
those APIs. But the calls can be rejected immediately by the API Management gateway or will not
be forwarded to the backend services without a valid subscription key. They can get a subscription
without approval from API publishers, although API publishers can even create subscriptions directly
for API consumers.

Several API access security mechanisms are supported for Azure API Management Service, such as
OAuth 2.0, client certificates, and IP allow lists.

Subscriptions and keys

A subscription key is a unique auto-generated key. This key can be passed through in the headers of
the client request or as a query string parameter.

A subscription offers full and detailed control over authorizations and policies. A key is linked directly
to a subscription and can be extended to different domains.

Each application must include the key in every request when calling a protected API.

Regeneration of subscription keys is easy and possible if we want to share a key with another
unauthorized user.

Figure 2.13 – Subscription in Azure API Management

Securing the API 25

The preceding screenshot shows that a subscription has two keys, a primary and a secondary key,
which makes it easier to regenerate it. For example, in the case of modifying the primary key, in order
to avoid downtime, you can use the secondary key in your applications.

Going back to the product that already includes our APIs where subscriptions are enabled, each
customer must provide a key during the product API call.

Developers will submit a subscription request to obtain a key. If this request is approved, then the
subscription key will be sent in a secure (encrypted) way.

The process of calling an API with the subscription key

The default header name is Ocp-Apim-Subscription-Key, and the default query string is
subscription-key. Applications making calls to subscription-protected API endpoints must
include a valid key in all of their HTTP requests passed in the request header or as a query string in
the URL.

If we want to test the API calls, we can use the developer portal or command-line tools, such as cURL.

Check out this example to pass a key in the request header using cURL:

curl --header "Ocp-Apim-Subscription-Key: <your key string>"
https://<yourapim gateway>.azure-api.net/api/path

Here’s another example cURL command that passes a key in the URL as a query string:

curl https://<yourapim gateway>.azure-api.net/api/
path?subscription-key=<keystring>

A 401 Access Denied response will be received from the API gateway if the key is not passed in the
header for any reason, the same as a query string in the URL.

Securing APIs by using certificates

In the previous section, we used keys, but we can also use certificates to provide Transport Layer
Security (TLS) mutual authentication between the client and the API gateway.

We have to configure the API Management gateway to only allow requests with certificates containing
a specific thumbprint. The authorization at the gateway level is handled through inbound policies.

API Management – Import, Manage, and Publish Your First API26

A certificate can include the following properties:

• Certificate authority (CA): The API allows only certificates signed by a particular CA

• Thumbprint: The API allows only certificates including a specified thumbprint

• Subject: The API allows a specific subject (mentioned in the certificate)

• Expiration date: The API only allows certificates that have not expired and are still available

Accepting client certificates in the consumption tier

If you build your APIs from serverless technologies, such as Azure Functions, the Consumption tier
in API Management is designed to meet serverless design principles.

You must explicitly enable the use of client certificates for the Consumption tier, which you can do
on the Custom domains page.

A custom domain is a domain or subdomain we can buy from a provider and use for personal or
professional purposes (e.g., yourdomain.com or pages.yourdomain.com).

Figure 2.14 – Custom domains

In the previous screenshot, we can see that we are able to add one or more client certificates. We can
enable requesting a client certificate by selecting Yes. Next, we will create policies.

Certificate authorization policies

There are the following different authorization policies:

• Inbound policies are executed when the API Management API is called

• Backend policies are executed when API Management calls the backend APIs

• Outbound policies are executed when API Management returns the response to the caller

Exercise 1 – creating a backend API and deploying APIs 27

 We can create policies in the Inbound processing policy file within the API Management gateway:

Figure 2.15 – Inbound processing | Policies

To secure an API, we are able to add a subscription and keys in Azure API Management. We can
also use certificates and policies. Next, we will learn how we can create a backend API and deploy it.

Exercise 1 – creating a backend API and deploying APIs
During this exercise, you’ll learn how to do the following:

• Create an API Management instance

• Import an API

• Configure the backend settings

• Test the API

We will start by creating an API Management instance using two methods, the first one using the
Azure portal and the second using Azure Cloud Shell.

Creating an API Management instance

This section will show you how to create an API Management instance using two methods: the Azure
portal and Azure Cloud Shell.

API Management – Import, Manage, and Publish Your First API28

Using the Azure portal

We will open the Azure portal using the following link: https://portal.azure.com/, then,
follow these steps:

1. Select Create a resource from the home page.

2. On the Create a resource page, select Integration and then API Management.

3. On the Install API Management gateway page, enter the different settings requested. The
following screenshot shows the Project details and Instance details sections:

Figure 2.16 – Create an API Management instance part 1

In the Project details section, we need to select the Subscription field option and select the Resource
group field option or create a new one.

In the Instance details section, we will specify the Region field and enter the Resource name field.
This is a unique name for your API Management service and can’t be modified after creation. A default
domain name will be generated as follows: <ResourceName>.azure-api.net. However, we
can configure a domain name to change it.

If we scroll down in the window shown in the previous screenshot, we’ll see that we need to complete
the Organization name and Administrator email fields, as well as select an option from the Pricing
tier field. It will look as shown in the following screenshot:

https://portal.azure.com/

Exercise 1 – creating a backend API and deploying APIs 29

Figure 2.17 – Create an API Management instance part 2

Enter the organization name, which will be used in many places, including in the title of the developer
portal and when sending notification emails.

We also need to enter the administrator email address to receive all the notifications sent from
API Management.

At the end of the blade, you need to select the pricing tier. You can start by using the Developer tier to
evaluate the service, but it is not recommended for production use. We can scale the API Management
tiers. Note that scale units are not supported for the Developer and Consumption tiers.

Then, select Review + create.

Important note
Creating and enabling an API Management service in this tier can take 30-40 minutes. You
can pin the service to the dashboard afterward so you can find it quickly.

API Management – Import, Manage, and Publish Your First API30

We created an API Management service by using the Azure portal. It is an interactive method, but
if you like using the command line, you can use Azure Cloud Shell. We will learn about that in the
next section.

Using Azure Cloud Shell

Azure Cloud Shell is a browser-based interactive, authorized shell for administering Azure resources.
It gives you the option of using either Bash or PowerShell as your shell experience, depending on
how you operate:

1. Log in to the Azure portal and open Cloud Shell.

Figure 2.18 – Azure Cloud Shell

When the Cloud Shell portal opens, you have two options: PowerShell or Bash. We will select
the Bash environment:

Figure 2.19 – Azure Cloud Shell using the Bash environment

2. We will define variables in order to use them in Command-Line Interface (CLI) commands.
In the following code snippet, we have just defined the name of the API Management instance,
the location, and the email address:

$ myApiName=apicollectionpackt

$ myLocation=EastUS2

$ myEmail=rebai.hamida@gmail.com

3. We will create a resource group. The following commands will create a resource group
named packtbookrg:

$ az group create --name packtbookrg --location
$myLocation

Exercise 1 – creating a backend API and deploying APIs 31

4. We will create an API Management instance. The az apim create command is used to
create the instance. The --sku-name Consumption option is used in our case just to
speed up the process for the walk-through, but we can use any Stock-Keeping Unit (SKU)
(pricing tier):

$ az apim create -n $myApiName \

--location $myLocation \

--publisher-email $myEmail \

--resource-group packtbookrg \

--publisher-name First-APIM-Exercise \

--sku-name Consumption

Important note
The operation should complete in about 5 minutes.

After creating the API Management service, we will import and publish an API in the next section.

Importing an API

This section shows you how to import and publish an OpenAPI Specification backend API (formerly
known as the Swagger Specification).

In this section, you’ll learn about the minimal web API used in our sample.

Introduction to the minimal web API

This is a new approach for building APIs without all the complex structure of a model-view-controller
(MVC) that is minimal according to the name. It includes the essential components needed to build
HTTP APIs. All you need are csproj and program.cs.

The following are the benefits of using the Minimal Web API:

• It is less complex than using ASP.NET Web API

• It is easy to learn and use

• You don’t need the MVC structure – no controllers!

• It requires minimal code to build and compile the application, which means the application
runs much faster, so better performance

• It has the latest improvements and functionalities of .NET 6 and C#10

API Management – Import, Manage, and Publish Your First API32

Creating a minimal web API using Visual Studio 2022

In this section, we will create an ASP.NET Core Web API application using Visual Studio 2022.

Follow these steps to create a minimal web API in Visual Studio 2022:

1. Open Visual Studio 2022 and select Create a new project.

2. Select the ASP.NET Core Web API project template:

Figure 2.20 – The ASP.NET Core Web API template

3. Disable Use controllers (uncheck to use minimal APIs) to be able to use minimal APIs.

Figure 2.21 – Enable Minimal APIs in Visual Studio 2022

Exercise 1 – creating a backend API and deploying APIs 33

4. When the project is created, open program.cs to see the API implementation:

Figure 2.22 – Minimal API sample in Program.cs

After exploring the minimal web API, we will learn how we can import it into the API Management
service in the next section.

Importing an API to API Management

Let’s look at the steps to import an API to API Management:

1. In the Azure portal, search for and select API Management services.

2. Next, on the API Management window, select the API Management instance you have
already created.

3. Select APIs in the API Management services navigation pane.

Figure 2.23 – APIs in API Management

API Management – Import, Manage, and Publish Your First API34

4. Select OpenAPI from the list. After that, we will select Full in the popup:

Figure 2.24 – Select OpenAPI

We need to fill in all the information needed in the Create from OpenAPI specification popup:

Exercise 1 – creating a backend API and deploying APIs 35

Figure 2.25 – Create from OpenAPI specification

API Management – Import, Manage, and Publish Your First API36

5. To create an API from OpenAPI specification, we need to add all the configuration settings.
The following table describes every setting displayed in the previous screenshot:

Click on Create to import the API.

Configuring the backend settings

The API is created, and a backend now needs to be specified.

We will select the settings in the blade to the right and enter the URL in the Web service URL field.
After that, we will deselect the Subscription required checkbox.

Exercise 1 – creating a backend API and deploying APIs 37

Figure 2.26 – Configure the backend settings

API Management – Import, Manage, and Publish Your First API38

Once the API has been imported, and the backend has been configured, it’s time to test the API. In
the next section, we will learn how to test our API in the Azure Management API service.

Testing the API

We need to select the Test tab. On the left, we will find all operations related to our API. On the right
of the page are the query parameters and headers, if any. Ocp-Apim-Subscription-Key is
auto-populated for the subscription key associated with this API. Another selection will show a list
of methods. We can select a method, for example, BillingList, then click on Send.

Figure 2.27 – Test the API

The backend responds with 200 OK and some data.

Figure 2.28 – Backend response 200 OK

Exercise 2 – using Azure API Management to proxy a public API 39

In the next section, we will learn how we can use Azure API Management to proxy a public API.

Exercise 2 – using Azure API Management to proxy a
public API
When we design a solution to consume one or more APIs, communication between the different
services, systems, and scripts will have to go through an API. Before describing these communications
and designing our APIs, we must take into consideration several elements, such as the following:

• The route structure

• Authentication and authorization

• Rate limiting

With Azure API Management, before data is received or sent, you can easily proxy an existing API
and modify the input and output.

In most cases, we want to modify the structure of an existing public API, add authentication, limit the
number of incoming requests, or even cache the results obtained. This is what we will cover in this
section, and we will discover the ease of managing an API and consuming it quickly.

We can use an Azure Logic Apps proxy, Azure App Service, or Azure Functions apps, but in our
example, we will use a public API.

In this exercise, we will use the previously imported API.

Importing an OpenAPI schema for proxying

There are different formats that the Azure API Management service will import.

In the list of available methods, the /BillingList method provides a list of billing details in JSON
format. Using a standard PowerShell query, as seen in the following code snippet, will allow us to
retrieve the results through the API proxy:

Result = Invoke-RestMethod -URI '< https://
healthcarebillingapi.azurewebsites.net/BillingList>'

$Result.data.summary

Developers tend to make changes to output keys returned to them. We are going to select the method
we need to modify; thereafter, we will select the same methods in Outbound Processing and select
Add Policy. After that, select Other policies, and in Transformation policies, look for the Find and
replace string in body option.

API Management – Import, Manage, and Publish Your First API40

Figure 2.29 – Find and replace string in body

We will be modifying the result sent back to the client as follows:

find-and-replace from="price_billing" to="price" />

In Outbound Processing, we are able to modify the response before it is sent to the client.

Summary
In this chapter, we learned about the different components of the API Management service and their
functions. After that, we focused on the role of API gateways in managing calls to our APIs. Then,
we learned how to secure access to APIs using subscriptions and certificates. We created a backend
API and used Azure API Management to proxy a public API.

In the next chapter, we will learn how to develop event-based and message-based solutions. We will
explore Event Grid, Azure Event Hubs, and Azure message queues.

3
Developing Event-Based and

Message-Based Solutions

In this chapter, we will explore the use of event-based and message-based solutions. We will publish
and subscribe from a web application, see how we can send and receive messages from a Service Bus
queue by using the same application, discover the operating mode of Event Grid and how it connects
to services and event handlers, and explore Azure Event Hubs.

In this chapter, we’re going to cover the following main topics:

• Exploring Event Grid and Azure Event Hubs

• Exercise 1 – publishing and subscribing from a .NET app to Event Grid events

• Exploring Azure message queues

• Exercise 2 – creating an Azure Service Bus namespace and a queue

• Exercise 3 – publishing messages to a Service Bus queue using a .NET Core application

• Exercise 4 – reading messages from a Service Bus queue using a .NET Core application

• Exercise 5 – sending and receiving messages to and from a topic

Introduction
An event is an action that causes a change of state. This state change can be simple or complex, but
when a state changes, this is considered an event. In the event-driven architecture approach, consumers
subscribe to events and can receive notifications when they occur. This contrasts with the traditional
server-client model, in which a client actively requests updates on a set of information. This model
solves a simple problem – how can we notify consumers of status changes? The message-based approach
solves this same problem but in a different way than the traditional server-client model. The simple
idea behind the message-based approach is that instead of consumers subscribing to event updates,
individual elements or services can have message queues with many calls. These calls are ordered
and sent to all parties.

Developing Event-Based and Message-Based Solutions42

To summarize, instead of having an event creating a service through a notification, a message queue
takes an event or output that requires additional processing and then adds it to a long queue.

Business organizations need to become event driven and able to respond in real time. In an event-driven
architecture, the events are used to trigger and communicate between decoupled services and delivered
in nearly real time, and the consumers are able to respond immediately when events are produced.

An event can be a change of status or an update or deletion of an item placed in a basket on an
e-commerce site. A sequence of related events represents a behavior or a status. For example, for an
item purchased, its price and a delivery address, in this case, the events will present the identifiers,
such as sending a notification that an order has been shipped.

Let’s examine the following diagram. The event router links the different services and is used as a
route for sending and receiving messages.

When an event producer is generated, the event router will execute a response to the first event after
it sends it as input to the appropriate consumers. We can observe the flow of events that are handled
asynchronously between managed services whose outcomes are determined as a result of a service’s
reaction to an event.

Figure 3.1 – Example of event-driven architecture

Exploring Event Grid and Azure Event Hubs 43

We have examined the basic elements of event-based architecture. We will now move on to look at
Azure Event Grid, which allows us to easily build applications with event-based architecture, and
Azure Event Hub, a scalable event-processing service that allows us to store and manage events.

Exploring Event Grid and Azure Event Hubs
In this section, we will explore the basic elements of Event Grid and Event Hub.

Event Grid

Azure Event Grid is used to easily build applications with event-based architectures.

It’s simple and interactive. To start, we select the Azure resource that we want to subscribe to, and
then we indicate the event handler or the endpoint of the webhook to which we will send the event.

Event Grid supports all events from Azure services, such as storage blobs and resource groups. Event
Grid also supports other external events using custom topics.

The filters provide the ability to route specific events to different endpoints. We can also multicast to
multiple endpoints to ensure events are reliably streamed.

Figure 3.2 – Sources and handlers

An event source is where the event happens. Several Azure services, including Blob Storage, Media
Services, IoT Hubs, and Service Bus, are automatically configured to send events. We can also use
custom applications to send events. Note that custom applications don’t need to be hosted in Azure
or in the cloud to use Event Grid for event distribution.

An event handler is the destination the event is sent to. The handler takes some further action to
process the event. Several Azure services, such as Azure Functions, Logic Apps, Queue Storage, or
any event hubs, are automatically configured to handle events. We can also use any webhook to handle
events. The webhook doesn’t need to be hosted in Azure or in the cloud to handle events.

Developing Event-Based and Message-Based Solutions44

Figure 3.3 – Event Grid basic concepts

We defined Azure Event Grid as routing all the events from Azure services. An Event Grid is composed
of two basic elements: the event sources and the event handlers. In the next section, we define Event
Hubs before moving on to some exercises.

Event Hubs

Azure Event Hubs is a scalable event processing service that stores and processes large volumes of
events, data, and telemetry produced by distributed software and devices. It provides a distributed
stream-processing platform with low latency and high reliability.

Exercise 1 – publishing and subscribing from a .NET app
to Event Grid events
In this exercise, we can use either Visual Studio Code or Visual Studio 2022 to create a console .NET
application. We will work through the following steps:

1. Creating an Event Grid.
2. Creating a .NET Console project.
3. Making some modifications to the program class to be able to connect to Event Grid.
4. Publishing new events to the Event Grid.

We will start by creating an Event Grid topic in the next section.

Exercise 1 – publishing and subscribing from a .NET app to Event Grid events 45

Creating an Event Grid topic

An Event Grid topic is a channel for related events (for example, storage events or inventory events).

An Event Grid topic provides an endpoint to which sources send events. A publisher creates an Event
Grid topic and decides whether the event source requires one topic or multiple topics. Topics are used
for collections of related events. Subscribers decide which topics to subscribe to so they can respond
to particular types of events.

We will use the Azure portal to create an Event Grid topic as follows:

1. Browse to the Azure portal (https://portal.azure.com), and then sign in with
your account.

2. In the Search services and marketplace text box, type Event Grid Topic and press Enter.
3. Select the Event Grid Topic result, then select Create. The following screenshot displays the

configured settings in the Basics tab. We enter all the information needed to create our Event
Grid topic, then select Review + create, and then Create.

Figure 3.4 – Create Topic in Event Grid

4. We will now deploy the Azure Event Grid Viewer to a web application.

We have created an Event Grid topic. In the next section, we will create a web application in order to
deploy the Azure Event Grid viewer.

https://portal.azure.com

Developing Event-Based and Message-Based Solutions46

Creating a web app to deploy the Azure Event Grid viewer

We will create a web app in the same resource group as our Event Grid topic. We will publish the web
app instance in a Docker container using the following configuration settings:

Figure 3.5 – Create Web App – the Basic tab

Exercise 1 – publishing and subscribing from a .NET app to Event Grid events 47

In the Docker tab, configure the settings as shown in the following figure. We use microsoftlearning/
azure-event-grid-viewer:latest in the Image and tag field. This image is a web application
built using ASP.NET Core and SignalR created for the purpose of viewing notifications from Azure
Event Grid in near-real time. After this is complete, select Review + create.

Figure 3.6 – Create Web App – the Docker tab

Lastly, select Create to create the web app using your specified configuration.

Creating an Event Grid subscription

We will now create a new subscription, validate its registration, then save the necessary credentials
in order to publish a new event on the subject.

Developing Event-Based and Message-Based Solutions48

If we go back to the Event Grid topic we created previously, we will see at the bottom a button for
creating a subscription, as shown in the following screenshot:

Figure 3.7 – Event Grid Topic window

Select the Create one button.

In the Basic tab, we start by defining the name of the event subscription and the event schema. The
topic is already defined for us. We can add the event type to the destination. The following screenshot
presents the configuration settings in full:

Exercise 1 – publishing and subscribing from a .NET app to Event Grid events 49

Figure 3.8 – Create Event Subscription – the Basic tab part 1

In the ENDPOINT DETAILS section, we need to define the Endpoint type field as Web Hook. In the
Subscriber Endpoint text box, enter the web app URL value that we created before and add /api/
updates. So, for example, if your web app URL value is https://eventgridviewersample.
azurewebsites.net, then your Subscriber Endpoint value would be https://
eventgridviewersample.azurewebsites.net/api/updates. Finally, we confirm
the selection and select Create.

If you need more details about Event Grid, you can go to the following links:

• https://learn.microsoft.com/azure/event-grid/create-view-manage-
system-topics

• https://learn.microsoft.com/azure/event-grid/custom-event-
quickstart

• https://learn.microsoft.com/azure/event-grid/scripts/event-grid-
cli-subscribe-custom-topic

https://learn.microsoft.com/azure/event-grid/create-view-manage-system-topics
https://learn.microsoft.com/azure/event-grid/create-view-manage-system-topics
https://learn.microsoft.com/azure/event-grid/custom-event-quickstart
https://learn.microsoft.com/azure/event-grid/custom-event-quickstart
https://learn.microsoft.com/azure/event-grid/scripts/event-grid-cli-subscribe-custom-topic
https://learn.microsoft.com/azure/event-grid/scripts/event-grid-cli-subscribe-custom-topic

Developing Event-Based and Message-Based Solutions50

The following screenshot presents the endpoint details in the Basic tab:

Figure 3. 9 – Create Event Subscription – the Basic tab part 2

So far, we have created the Event Grid topic and the subscription. Next, we will learn how to publish
new events to the Event Grid topic using a .NET console application.

Create a .NET Console project

To create a new .NET Console project, we can use either of two integrated development environments
(IDEs): Visual Studio Code or Visual Studio 2022.

Using Visual Studio Code

In Visual Studio Code, open the integrated terminal. Next, run the following command to create a
new .NET project named EventPublisherSample in the current folder:

dotnet new console –name EventPublisherSample –output .

Let’s import the latest version of Azure.Messaging.EventGrid from NuGet, in our example,
version 4.10.0, and run the following command:

dotnet add package Azure.Messaging.EventGrid –version 4.10.0

To build the application, we use the following command:

dotnet build

Exercise 1 – publishing and subscribing from a .NET app to Event Grid events 51

Using Visual Studio 2022

We select Create a new project, then search for the console template. We name our project
EventPublisherSample and select the latest .NET framework:

Figure 3. 10 – Create a new project – Console App

Let’s import the latest version of Azure.Messaging.EventGrid from NuGet. In our example,
it is version 4.10.0. We use NuGet by right-clicking on Dependencies, then selecting Manage NuGet
Packages, and installing Azure.Messaging.EventGrid via NuGet, as in the following screenshot:

Figure 3.11 – Import Azure.Messenging.EventGrid

Developing Event-Based and Message-Based Solutions52

After adding the package, we will update our Program class in the next section.

Making some modifications to the Program class to be able to
connect to Event Grid

We will continue to use Visual Studio 2022 (we can use Visual Studio Code also) in the following steps:

1. Open the Program.cs file.

2. Import the Azure and Azure.Messaging.EventGrid namespaces (https://
www.nuget.org/packages/Azure.Messaging.EventGrid/) from the Azure.
Messaging.EventGrid package imported previously from NuGet using the following
lines of code:

using Azure;

using Azure.Messaging.EventGrid;

3. Check the entire source code in the Program.cs file:

Using System;

using System.Threading.Tasks;

using Azure;

using Azure.Messaging.EventGrid;

 public class Program

 {

 private const string topicEndpoint = "<topic-
endpoint>";

 private const string topicKey = "<topic-key>";

 public static async Task Main(string[] args)

 {

 }

 }

We added the System and System.Threading.Tasks packages that will be used for
asynchronous methods.

In the code, we added a Program class that includes two private properties and a static asynchrony method.

The first property is the topicEndpoint string constant that includes the Event Grid endpoint value.
The second property is the topicKey string constant that contains the Event Grid topic key value.

https://www.nuget.org/packages/Azure.Messaging.EventGrid/
https://www.nuget.org/packages/Azure.Messaging.EventGrid/

Exercise 1 – publishing and subscribing from a .NET app to Event Grid events 53

We can find these credentials by going to the Event Grid Topic blade, selecting Overview in the left-
hand menu, and looking at the Topic Endpoint entry:

Figure 3.12 – Topic Endpoint

The topic key is obtained by selecting Access keys under the Settings heading in the same left-hand
menu as previously. We need to select and copy the link in the Key 1 text box.

Figure 3.13 – Topic key

In the next section, we will publish new events.

Publishing new events

In the Program.cs file, in the empty main method, we will create a new variable named credential
that will use topicKey, and another variable named client that will use the endpoint and
the credential variables in the constructor as parameters. So, we will add the following lines of
code to the main method:

var endpoint = new Uri(topicEndpoint);

var credential = new AzureKeyCredential(topicKey);

Developing Event-Based and Message-Based Solutions54

 var client = new EventGridPublisherClient(endpoint,
credential);

We add the following source code to create a new event1 variable and populate that variable with
sample data:

var event1= new EventGridEvent(
 subject: $"New Patient: Hamida Rebai",
 eventType: "Patients.Registration.New",
 dataVersion: "1.0",
 data: new
 {
 FullName = "Hamida Rebai",
 Address = "Quebec, G2C0L6"

 }

);

Next, we add an event2 variable:

var event2 = new EventGridEvent(

 subject: $"New Patient: Mohamed Trabelsi",

 eventType: "Patients.Registration.New",

 dataVersion: "1.0",

 data: new

 {

 FullName = "Mohamed Trabelsi",

 Address = "Quebec, G1X3Z2"

 }

);

After, we will add the following lines of code to invoke the EventGridPublisherClient.
SendEventAsync method, and we will see in the following source code how to render the message
for every event to the console:

 await client.SendEventAsync(event1);

 Console.WriteLine("This is the first event published");

 await client.SendEventAsync(event2);

 Console.WriteLine("This is the second event
published");

Exercise 1 – publishing and subscribing from a .NET app to Event Grid events 55

Let’s run our application and observe the result in the Azure Event Grid viewer web application:

Figure 3.14 – Console App output for published events

In the following screenshot, we present Azure Event Grid Viewer published in Azure App Service:

Figure 15 – Azure Event Grid viewer result

To summarize this exercise, we used static data in the console application, but in real life, this data can
be provided from another application (web or mobile) or any software as a service (SaaS) solution.
For our use case, this data comes from a web and mobile application, and every new registration will
be sent to Event Grid to be validated by another system.

Developing Event-Based and Message-Based Solutions56

Exploring Azure message queues
Microsoft Azure Service Bus is a fully managed enterprise integration message broker. Some common
messaging scenarios are included in Service Bus, such as messaging in case of transferring data or
decoupling applications to improve their reliability and their scalability and message sessions by
implementing workflows that require message ordering, for example, or topics and subscriptions.

Azure supports the following two types of queuing mechanisms:

• Queue Storage is a simple message queue service for storing large numbers of messages

• Service Bus queues are part of a broader set of messaging services that support queuing,
publishing/subscribing, and advanced integration patterns

Azure Queue Storage is a service for sending and receiving messages but is also used to store a large
number of messages; a queue message can be up to 64 KB in size.

Exercise 2 – creating an Azure Service Bus namespace and
a queue
In this exercise, we will perform the following actions:

• Create an Azure Service Bus namespace

• Create an Azure Service Bus queue

The queues can be created using the interactive interface of the Azure portal, using the command line
via PowerShell or Azure CLI, or using Resource Manager templates. We will look at only the first two
methods here: Azure Portal and Azure CLI.

Using the Azure portal

Let’s open the Azure portal and select All services. In the Integration category, we can find the
Service Bus resource:

Exercise 2 – creating an Azure Service Bus namespace and a queue 57

Figure 3.16 – Creating a Service Bus using the Azure portal

After filling in the configuration required to create a namespace that will include after the queue, we
click on + Create or select Create service bus namespace:

Figure 3.17 – Creating a namespace using the Azure portal

Developing Event-Based and Message-Based Solutions58

In the Basics tab, we have the following interface:

Figure 3. 18 – Creating a Service Bus namespace

If you select Basic in the Pricing tier field, note that you will not be able to create Topics, only Queues,
as presented in the following screenshot:

Exercise 2 – creating an Azure Service Bus namespace and a queue 59

Figure 3.19 – Pricing tier plans and features – Basic and Standard

In the Networking tab, you can leave the default values for the connectivity method that is public
access, or you can select your private access if you have already configured the landing zone. In the
landing zone, you configure your account, security governance, networking, and identity.

We will select Review + create then select Create and the Service Bus namespace will be created.

Once finished, we will create a queue in the portal. Let’s open the Service Bus namespace and select
Overview from the left-hand menu. Next, at the top of the screen, select + Queue and fill in all the
information required to create the queue, including the name, the queue max size, the max delivery
count, message time to live (days, hours, minutes and seconds), the lock duration (days, hours, minutes
and seconds). Additionally, we need to enable the following options:

• Auto-delete on idle queue

• Duplicate detection

• Dead lettering on message expiration

• Partitioning

• Sessions

Developing Event-Based and Message-Based Solutions60

We can enable forwarding messages to queues and topics:

Figure 3.20 – Creating a queue

We used the Azure portal to create an Azure Service Bus namespace and a queue. In the next section,
we will see how to do this using the Azure CLI.

Using the Azure CLI

To begin, we need to create a resource group if one doesn’t exist already:

Az group create –name packrg –location eastus

A message queue uses a namespace, so we will need to create a namespace:

Az servicebus namespace create –resource-group

 packrg –name appointmentQueue –location eastus

Next, we create a queue using the following command:

az servicebus queue create –resource-group packrg –namespace-
name appointmentQueue –name myqueue

Exercise 3 – publishing messages to a Service Bus queue using a .NET Core application 61

To check whether the message queue has been created successfully, you can check in the portal or
run the following command line:

az servicebus queue list –resource-group packrg –namespace-name
appointmentQueue

In the following screenshot, we can see the different Service Bus queues:

Figure 3.21 – Service Bus queues

We demonstrated two different methods to create an Azure Service Bus namespace and a queue – the
Azure CLI and the Azure portal. In the next exercise, we will publish messages to a Service Bus queue
using an application.

Exercise 3 – publishing messages to a Service Bus queue
using a .NET Core application
We previously created the Azure Service Bus queue. Now, we will start sending messages from the
Azure Service Bus queue using a .NET Core console application.

We will create a solution that will include two projects:

• AzureQueueSample.Domains: A class library

• AzureQueueSample.Sender: A .NET Core console application

Developing Event-Based and Message-Based Solutions62

We will add the AzureQueueSample.Domains project as a project reference to the
AzureQueueSample.Sender project. To do that, right-click on the AzureQueueSample.
Sender project Dependencies, then select Add Project Reference:

Figure 3.22 – Add Dependencies reference to a project

We select the AzureQueueSample.Domains project and the project will be added in as a reference:

Figure 3.23 – AzureQueueSample solution

Exercise 3 – publishing messages to a Service Bus queue using a .NET Core application 63

In the AzureQueueSample.Domains project, we will add a new class named Appointment:

Public class Appointment

 {

 public Guid AppointmentId { get; set; }

 public string Status { get; set; }

 public string SlotId { get; set; }

 public string PatientEmail { get; set; }

 public string DoctorId { get; set; }

 public string CurrentDate { get; set; }

 public string StartTime { get; set; }

 public string EndTime { get; set; }

 }

In the following screenshot, we use NuGet Package Manager to add two different packages to
AzureQueueSample.Sender, namely Azure.Messaging.ServiceBus and NewtonSoft.
Json.

Figure 3.24 – Add Microsoft.Azure.ServiceBus package from NuGet

Next, we open the program.cs class of AzureQueueSample.Sender and add a list of appointments.
We also add the connection string to the target Azure Service Bus namespace and the queue name.

Developing Event-Based and Message-Based Solutions64

In the Azure portal, go back to the Service Bus namespace and select Settings | Shared access policies,
then copy the Primary Connection String value:

Figure 3.25 – Shared access policies in the Azure Service Bus namespace

This is the Program class that allows us to publish messages to the Service Bus queue:

private const string ServiceBusConnectionString = "Endpoint=sb:
//appointmentqueue.servicebus.windowsR.net/;SharedAccessKeyName
=RootManageSharedAccessKey;SharedAccessKey=1CqAJhjCv5M284qwRuLt
Apely83Ju9G48RxGuED2Zs0=";

 private const string QueueName = "myqueue";

 static List<Appointment> appointments = new
List<Appointment>

 {

 new Appointment ()

 { AppointmentId = Guid.NewGuid(),

 CurrentDate = DateTime.Now.ToString(),

 StartTime = "10:00AM",

 EndTime ="11:00AM",

 DoctorId = "code1",

 SlotId="S1",

 PatientEmail= "patient1@email.com",

 Status = "Pending"

 },

Exercise 3 – publishing messages to a Service Bus queue using a .NET Core application 65

 new Appointment()

 {

 AppointmentId = Guid.NewGuid(),

 CurrentDate = DateTime.Now.ToString(),

 StartTime = "1:00PM",

 EndTime ="2:00APM",

 DoctorId = "code8",

 SlotId="S7",

 PatientEmail= "patient4@email.com",

 Status = "Pending"

 },

 new Appointment ()

 {

 AppointmentId = Guid.NewGuid(),

 CurrentDate = DateTime.Now.ToString(),

 StartTime = "8:00AM",

 EndTime ="9:00AM",

 DoctorId = "code11",

 SlotId="S21",

 PatientEmail= "patient31@email.com",

 Status = "Pending"

 }

 };

 static async Task Main(string[] args)

 {

 // Because ServiceBusClient implements
IasyncDisposable, we'll create it

 // with "await using" so that it is automatically
disposed for us.

 Await using var client = new
ServiceBusClient(ServiceBusConnectionString);

 // The sender is responsible for publishing
messages to the queue.

 ServiceBusSender sender = client.
CreateSender(QueueName);

 foreach (var item in appointments)

 {

Developing Event-Based and Message-Based Solutions66

 var messageBody = JsonConvert.
SerializeObject(item);

 ServiceBusMessage message = new
ServiceBusMessage(Encoding.UTF8.GetBytes(messageBody));

 await sender.SendMessageAsync(message);

 Console.WriteLine($"Sending Message : {item.
AppointmentId.ToString()} ");

 }

 Console.Read();

 }

The result will be as follows:

Figure 3.26 – Sending messages to the Azure Service Bus queue

In this exercise, we published messages to a Service Bus queue using a .NET Core application. In the
next section, we will read the messages from a Service Bus queue using the same application.

Exercise 4 – reading messages from a Service Bus queue
using a .NET Core application
Previously, we sent some messages to a Service Bus queue. In this exercise, we will read them. To do
that, we will add a new AzureQueueSample.Receiver .NET Core console application. We will
need to add the same NuGet packages as previously for the sender application: Azure.Messaging.
ServiceBus and NewtonSoft.Json. We will also add AzureQueueSample.Domains as
a reference.

Exercise 4 – reading messages from a Service Bus queue using a .NET Core application 67

To read a message from the Service Bus queue, we use the following code:

public class Program

{

 private const string ServiceBusConnectionString = "Endpoint
=sb://appointmentqueue.servicebus.windows.net/;SharedAccessKey
Name=RootManageSharedAccessKey;SharedAccessKey
=1CqAJhjCv5M284qwRuLtApely83Ju9G48RxGuED2Zs0=";

 private const string QueueName = "myqueue";

 static async Task Main(string[] args)

 {

 await ReceiveMessagesAsync();

 }

 private static async Task ReceiveMessagesAsync()

 {

 await using var client = new
ServiceBusClient(ServiceBusConnectionString);

 // The receiver is responsible for reading messages
from the queue.

 ServiceBusReceiver receiver = client.
CreateReceiver(QueueName);

 ServiceBusReceivedMessage receivedMessage = await
receiver.ReceiveMessageAsync();

 string body = receivedMessage.Body.ToString();

 Console.WriteLine(body);

 Console.Read();

 }

}

We have now published messages to a Service Bus queue and then read the messages from the queue
using a .NET Core console application in the previous source code.

Developing Event-Based and Message-Based Solutions68

We will send messages to Azure Service Bus, and we will open the Azure Service Bus instance. In the
Overview page, we check the metrics related to the number of requests and messages, as presented
in the following screenshot:

Figure 3.27 – Queue metrics in Azure Service Bus

We can select Queues under Entities to get more details related to queue metrics, as presented in the
following screenshot:

Figure 3.28 – Extended queue metrics in Azure Service Bus

Exercise 5 – sending and receiving messages to and from a topic 69

In the previous sample, we sent the messages to a queue but we can also send messages to the topic.
If we need to send a message in the one-to-one system, we use Azure Service Bus queue, but if we
need to send a message to multiple systems, we use Azure Service Bus topic.

In the next section, we will create a topic and a subscription, then send messages to the topic.

Exercise 5 – sending and receiving messages to and from
a topic
In this section, we will create a topic and a Service Bus subscription to that topic using the Azure
portal. Then, we will implement a .NET console application to send a set of messages to this topic
and receive them from the subscription.

Creating a topic using the Azure portal

To create a topic in Azure Service Bus using the Azure portal, we follow these steps:

1. Open your Service Bus namespace page and select Topics from the left-hand menu.

2. Click the + Topic button to add a new topic as presented in the following screenshot:

Figure 3.29 – Add a topic to your Service Bus namespace

Developing Event-Based and Message-Based Solutions70

3. A new dialog window will be displayed. Enter a name for the topic, such as mytopic, and
leave the default values for the other options.

4. Select Create to confirm the topic creation.

Now that we’ve created a new topic, let’s create a subscription to that topic.

Creating a subscription to the topic

To create a subscription to the previously created topic, we follow these steps:

1. Open the topic and click the + Subscription button on the toolbar, as presented in the
following screenshot:

Figure 3.30 – Add a subscription to the Service Bus topic

Exercise 5 – sending and receiving messages to and from a topic 71

2. A new dialog window will be displayed. To create a subscription, enter Sub1 in the Name
field and 3 for Max delivery count. We leave the other values at their defaults, as presented
in the following screenshot:

Figure 3.31 – Create a subscription page

3. Select Create to confirm the creation of the subscription.

Sending messages to the topic

In this section, we will add functions to our previously created .NET application and will send messages
to the Service Bus topic.

We start by configuring the access policies for this Service Bus topic:

1. Select Shared access policies from the Settings section of the left-hand menu. Then, click the
+ Add button to configure a new shared access policy.

Developing Event-Based and Message-Based Solutions72

2. Fill in the Policy name field as desired and select the different policies to be authorized (Manage,
Send, or Listen), as presented in the following screenshot:

Figure 3.32 – Manage Shared access policies

3. Under Shared access policies, select the policy and copy the Primary Connection String
value, as presented in the following screenshot:

Figure 3.33 – Select the Primary Connection String for the shared access policy

Exercise 5 – sending and receiving messages to and from a topic 73

4. To send a message to the Service Bus topic, we use the following code:

private const string ServiceBusTopicConnectionString =
"Endpoint=sb://appointmentqueue.servicebus.windows.
net/;SharedAccessKeyName=ReadAndWrite;SharedAccessKey
=Fotiiqahw46U5iJY0+olkYjydpkhOrX4bfUP6NirTgY=;EntityPath=
mytopic";

 private const string topicName = "mytopic";

await using var clientForTopic = new
ServiceBusClient(ServiceBusTopicConnectionString);

 ServiceBusSender sender = clientForTopic.
CreateSender(topicName); await using var client = new
ServiceBusClient(ServiceBusConnectionString);

 ServiceBusSender sender = client.
CreateSender(topicName);

 foreach (var item in appointments)

 {

 var messageBody = JsonConvert.
SerializeObject(item);

 ServiceBusMessage message = new
ServiceBusMessage(Encoding.UTF8.GetBytes(messageBody));

 await sender.SendMessageAsync(message);

 Console.WriteLine($"Sending Message: {item.
AppointmentId} ");

 }

Developing Event-Based and Message-Based Solutions74

5. Open the Service Bus topic in the Azure portal, then select the subscription to see the metrics
for messages sent, as presented in the following screenshot:

Figure 3.34 – Metrics for the Service Bus topic under subscription

6. To see more details about the requests and the messages sent to the topic, select the topic, and
in the Overview pane, you will see something similar to the following screenshot:

Figure 3.35 – Topic metrics: requests and messages

Exercise 5 – sending and receiving messages to and from a topic 75

A queue allows a single consumer to process messages. Unlike queues, topics and subscriptions provide
a one-to-many form of communication in a publish-subscribe model. This is useful when scaling to
a large number of recipients. All published messages are available to all subscribed subscribers to the
topic. When an editor posts a message on a topic, one or more subscribers receive a copy of the message.

Figure 3.36 – Topics and subscriptions

Subscriptions can use additional filters to limit the messages they receive. Publishers send messages
to topics the same way they send messages to queues. However, consumers do not receive messages
directly from topics. Instead, the consumer receives messages from the subscription to the topic. A
topic subscription is like a virtual queue that receives copies of messages sent to the topic. Consumers
receive messages from subscriptions the same way they receive messages from queues.

We created a topic and a Service Bus subscription to that topic, we sent a message to the topic, and in
the next section, we will receive these messages from the topic’s subscription using C# source.

Receiving messages from a subscription

To read the previously created messages from the Service Bus topic, we start by creating a receiver
that we can use to receive the message:

await using var clientForTopic = new
ServiceBusClient(ServiceBusTopicConnectionString);

 ServiceBusReceiver receiver = clientForTopic.
CreateReceiver(topicName);

The received is a different type as it contains some
service set properties: ServiceBusReceivedMessage
receivedMessage = await receiver.ReceiveMessageAsync();

We will retrieve the message body as a string:

 string body = receivedMessage.Body.ToString();

 Console.WriteLine(body);

 Console.Read();

Developing Event-Based and Message-Based Solutions76

Queues and topics are similar to when the sender sends a message, but the message is processed
differently, depending on the receiver. A queue can only have one consumer, but a topic can have
multiple subscribers.

Summary
In this chapter, we talked about event-based and message-based solutions and the difference between
them. Next, we explored Azure Event Grid and Azure Event Hubs and examined how to publish
and subscribe from a .NET application to Event Grid. Then, we talked about Azure message queues
and published messages from a .NET application. Lastly, we read those messages using the .NET
console application.

In the next chapter, we will create and deploy function apps in Azure.

Question
1. Which packages need to be added to read messages from a Service Bus queue using a .NET

Core application?

Part 2:
Connecting Your Application

with Azure Databases

In this part of the book, we will focus on Azure database solutions for relational and non-relational
databases, big databases, and different types of storage.

This part comprises the following chapters:

• Chapter 4, Creating and Deploying a Function App in Azure

• Chapter 5, Develop an Azure Service Fabric Distributed Application

• Chapter 6, Introduction to Application Data

• Chapter 7, Working with Azure SQL Database

• Chapter 8, Working with Azure Storage

• Chapter 9, Working with Azure Cosmos DB to Manage Database Services

• Chapter 10, Big Data Storage Overview

4
Creating and Deploying a

Function App in Azure

One of the critical decisions architects and developers make in the phase of architecting a new cloud
software or application is how to connect to the backend services, run background processing, run
backend tasks, and carry out more tasks, such as scheduling and sending emails, without affecting
the main application processing. For this, the Azure Functions app can be useful.

We can use Azure Functions to execute code in a cloud environment in a serverless way. All we
need to do is to write less code with a low cost for a specific problem without caring about the whole
application, even the infrastructure where we will run it. We will focus, in this case, on logic and
business scope. We can execute Azure Functions in response to events as well.

In this chapter, we will cover the basic concepts of Azure Functions and the hosting plan options.
We will explore the development of Azure functions and develop durable functions, which are an
extension of Azure Functions.

In this chapter, we’re going to cover the following main topics:

• Exploring Azure Functions

• Developing Azure functions

• Developing durable functions

Exploring Azure Functions
Azure Functions is similar to Azure WebJobs, with some differences related to scaling policies, language
support, and trigger events. They are both built on Azure App Service. Because Azure Functions is
built on the WebJobs SDK, it shares the same triggers and connections with or to Azure services.

Azure Functions acts as a modern serverless architecture providing event-driven, configured cloud
computing for application development.

Creating and Deploying a Function App in Azure80

In Azure Functions, there are two very important concepts: bindings and triggers.

When we create Azure Functions, we need to configure the name of the function. To call a function,
we use triggers. A function must have at least one trigger. The function name and the triggers are
configured in the function.json file. We have more information in the configuration file, such
as on bindings. We use constraints to have input and output bindings, and all of them will allow you
to connect with databases from your code. All of this saves coding on the connection. But with many
Azure service pools, you don’t need to do this—you don’t need to write code because the bindings
take care of those connections.

In the following figure, we present the different bindings and triggers:

Figure 4.1 – Triggers and bindings

In the next section, we will define more triggers in Azure Functions.

Triggers

A trigger defines how a function is invoked; it provokes the running of a function. Triggers can
include the following:

• Blob Storage: When a file or folder is uploaded or changed in storage, this will invoke your function

• HTTP: Invokes your function similar to a REST API

• Queue in a service bus: When items exist in a queue, it invokes your function

• Timer: This will invoke your function at scheduled intervals

In the next section, we will define the bindings in Azure Functions further.

Exploring Azure Functions 81

Bindings

Binding to a function is a method of declaratively connecting another resource to the function.
Bindings can be connected as input bindings, output bindings, or both. Some examples of bindings
include the following:

• Cosmos DB: Connect to the database to be able to load or save files easily

• Table Storage: This uses the key/value storage from your functions app

• Queue Storage: This retrieves one or more items from a specific queue, or places a new one
in the queue

You can use different bindings by mixing or matching them according to your scenario.

Order processing scenario using Azure Functions

A healthcare company deploys optimized solutions to improve healthcare access for patients. It offers
multiple applications (mobile, web, and desktop applications) for doctors and hospitals. It has a web
and mobile application called EparaMed. This is an online drugstore that offers several services.
Customers log in to purchase their products, and these products can be shipped or picked up.

The following is the workflow of an order processing scenario using Azure Functions:

Figure 4.2 – Order processing scenario

The previous figure presents the workflow of an order processing scenario.

Creating and Deploying a Function App in Azure82

Let’s describe the workflow. We have all these actions:

1. When a customer places a new order, the application (web or mobile) submits a message to
the service bus queue. The message includes the order details.

2. Azure Functions separates the orders placed for the products to be submitted to the topic, and
the other orders are sent to the service bus queue.

3. The product order will further be separated based on order category using topic subscription
rules. This topic filters, by category, the orders into two subscriptions using subscription rules.

4. Azure Functions retrieves the price of the ordered product from the storage table and calculates
the price of the order.

5. An invoice will be created based on the price, and a notification will be sent to the customer—
including the product details and the invoice—using Microsoft Outlook.

This scenario is an example related to the use case of order processing, and its implementation can
be found on GitHub:

https://github.com/PacktPublishing/A-Developer-s-Guide-to-Building-
Resilient-Cloud-Applications-with-Azure/tree/main/Chapter4

To accelerate application development, we can use Azure Functions as in our previous scenario. We
don’t need to think about the infrastructure challenges, and we have the ability to abstract the developer
away from having to deal with servers—either virtual or physical—because the Azure Functions
service is based on serverless architecture.

Developing Azure functions
In this section, we will discuss the key components and the structure of a function. We will see how
we can create triggers and bindings and learn how we can create a function by using Visual Studio
Code. We will also use Azure Functions Core Tools and connect it to the Azure service.

Azure Functions’ development

A function is composed of two important elements:

• Your code: It can be written in any language

• Configuration JSON file: function.json, which is generated automatically from annotations
in the code

The following example presents a function.json file. We defined the triggers, bindings, and more
configuration settings needed. Every function includes only one trigger. To determine the events to
monitor or the workflow of the data in the input and output of a function’s execution, the runtime
uses this configuration file.

https://github.com/PacktPublishing/A-Developer-s-Guide-to-Building-Resilient-Cloud-Applications-with-Azure/tree/main/Chapter4
https://github.com/PacktPublishing/A-Developer-s-Guide-to-Building-Resilient-Cloud-Applications-with-Azure/tree/main/Chapter4

Developing Azure functions 83

The name property is used for the bound data in the function. In the following example, the name
is AddAParamName:

"bindings":[
// Add your bindings here
{
"type": "YourBindingType",
"direction": "in",
"name": "AddAParamName",
// Add more depending on binding
}

]}

Let’s now discuss the function app, which is a way to organize and manage your functions. When
we create a function, we need an execution context in Azure where our created function will run. A
function app consists of one or more individual functions that are managed, deployed, and scaled
together. All functions created in a function app will share the same pricing plan, deployment method,
and runtime version.

With a code editor such as Visual Studio (2019 or 2022) or Visual Studio Code, it is easy to create
and test your function locally. We can even connect our local functions to live Azure services.

There are three ways to create a function app:

• In the Azure portal, write a script function

• Using the Azure CLI, create the necessary resources

• Using your favorite integrated development environment (IDE), such as Visual Studio 2022
or Visual Studio Code, build functions locally and publish them to Azure

In the next section, we will create an Azure Functions instance by using Visual Studio 2022. Visual
Studio provides an Azure Functions template.

Creating an Azure Functions instance by using Visual Studio 2022

We will create a simple C# function that will respond to HTTP requests. Then, after testing it, we will
deploy it to Azure Functions.

The prerequisites for creating the function are as follows:

• An Azure account where you are able to create any Azure resources. You can sign up for a free
trial at https://azure.com/free.

• Visual Studio 2022 Community Edition, which is free to use.

• .NET Core 6, which is the target framework for the next steps.

Let’s create a new project using a Visual Studio Azure Functions template.

https://azure.com/free

Creating and Deploying a Function App in Azure84

Creating your local project

Select Create a new project at the bottom of the window and search using the function keyword
in the search box, as follows:

Figure 4.3 – Creating a new Functions app

Select the Azure Functions template and then select New to configure the project. This template
creates a C# class library project that you can publish to a function app in Azure. We will provide the
project name. Select the location and then select Next. You can change the solution name and check
Place solution and project in the same directory:

Figure 4.4 – Visual Studio solution configuration

Developing Azure functions 85

Next, we will continue configuring our project. We need to select the latest framework supported by
the worker function. Azure Functions provides many templates to use depending on your scenario,
as shown here:

Figure 4.5 – Function templates

By default, we have Http trigger, but we have more, including the following:

• Http trigger: This is used when the code is triggered by using an HTTP request.

• Timer trigger: This is used to execute any batch tasks by defining a planned schedule and also
for cleanup tasks.

• Cosmos DB Trigger: This is used to process when Azure Cosmos DB documents are added
or updated in collections in the NoSQL database.

• Blob trigger: This is used for image resizing or to process Azure Storage blobs when they are
added to containers.

• Queue trigger: This is used for responding to messages when they are pushed in an Azure
Storage queue.

• Event Grid trigger: This is used to build event-based architectures if we want to respond to
some events delivered to an Azure event grid.

• Event Hub trigger: This is used in some scenarios, such as user experience, application
instrumentation or workflow processing, and Internet of Things (IoT), and to respond to
events delivered to an Azure event hub.

• Service bus queue trigger: This is used to connect your code to other Azure services or
on-premises services by listening to message queues.

• Service bus topic trigger: This is used to connect your code to other Azure services or
on-premises services. To do that, we will subscribe to topics.

Creating and Deploying a Function App in Azure86

In our sample, we will use Http trigger. We can enable Docker.

For Authorization level, we can select Function, Anonymous, or Admin. In our case, we will select
Anonymous, which enables anyone to call your function endpoint. In the default level—that is,
Function—we have to present the function key in requests to access our function endpoint:

Figure 4.6 – Enabling Docker and configuring authorization level

A function app requires a storage account that can be assigned or created when we publish the project to
Azure Functions. If we select Http trigger, we don’t need an Azure Storage account connection string.
This is why we need to select Use Azurite for runtime storage account (AzureWebJobsStorage).

We select the Create button to create the function project and Http trigger function:

Figure 4.7 – Configuring a functions app project

Developing Azure functions 87

This is the structure of our functions app; we have a project that contains a class including boilerplate
code for the Http trigger function type. An HTTP response that includes a value from the request
body or query string will be sent by boilerplate code. The HttpTrigger attribute will specify that
the function is triggered by an HTTP request. A root project folder includes all the code of the function
app. We have a host configuration file named host.json.

The host.json file includes the runtime-specific configurations:

FunctionsAppSample

 | - bin

 | - Function1

 | | - function.json

 | - host.json

 | - local.settings.json

The full code sample is available on GitHub:

https://github.com/PacktPublishing/A-Developer-s-Guide-to-Building-
Resilient-Cloud-Applications-with-Azure/tree/main/Chapter4

With the following figure, we can explore the Azure Functions structure in Visual Studio 2022:

Figure 4.8 – Functions app structure

https://github.com/PacktPublishing/A-Developer-s-Guide-to-Building-Resilient-Cloud-Applications-with-Azure/tree/main/Chapter4
https://github.com/PacktPublishing/A-Developer-s-Guide-to-Building-Resilient-Cloud-Applications-with-Azure/tree/main/Chapter4

Creating and Deploying a Function App in Azure88

After creating the application, we run it locally. Visual Studio integrates with Azure Functions Core
Tools to let you run this project on your local development computer before you publish it to Azure:

Figure 4.9 – Running the functions app locally

As we can see from the previous figure, Function1 has GET and POST methods and the URL is
http://localhost:7071/api/Function1. This is the URL you can use to execute the function.
So, we will copy the URL of our function from the Azure Functions runtime output, and we will paste
the URL for the HTTP request into our browser’s address bar. We will append the URL by adding a
name for the function, as follows: localhost:7071/api/Function1?name=functions.
You can see the output here:

Figure 4.10 – Running the function locally

After creating and testing the Azure Functions app, we will publish it to Azure Functions.

Publishing Azure Functions to Azure

In the Visual Studio project, right-click on the project name and select Publish.

We will be presented with a Publish window; select Azure and click on Next. We will then have to
select the hosting environment and the operating system (Linux or Windows). If we selected Docker,
we would publish in an Azure Functions app container. In our case, we will select Azure Function
App (Windows):

Developing Azure functions 89

Figure 4.11 – Publishing a functions app to Azure Functions

After that, you can select an existing Azure Functions instance or create one from Visual Studio:

Figure 4.12 – Select an existing or create a new Azure Function window

Creating and Deploying a Function App in Azure90

In the previous figure, we can see the Select existing or create a new Azure Function window.

In the following figure, we see that to create a new function, we need to fill in all the configuration
settings, such as the name and the subscription name. We will also select the resource group, the plan
type, the location, and the Azure Storage location:

Figure 4.13 – Creating an Azure Functions instance by using Visual Studio 2022

In the previous figure, we used Visual Studio 2022 to create an Azure Function instance.

When we click on Create, the resource will be created in Azure and we will get the window shown in
the following figure, which confirms the creation:

Developing Azure functions 91

Figure 4.14 – Selecting an existing Azure Function instance

Then, we will click on Publish to publish our functions to Azure Functions. Don’t forget to compile
in release mode before publishing to Azure Functions.

Figure 4.15 – Publish a functions app to Azure Function App

In the Publish tab, we will select Manage in Cloud Explorer. This will open the new functions app
Azure resource in Cloud Explorer.

Creating and Deploying a Function App in Azure92

Creating an Azure Functions instance by using Visual Studio Code

In the previous section, we created an Azure Functions instance in Visual Studio 2022 and published it.

In this section, we will create an Azure Functions instance by using Visual Studio Code.

Let’s start with the prerequisites for creating this:

• An Azure account where we are able to create any Azure resources. You can sign up for a free
trial at https://azure.com/free.

• Visual Studio Code.

• Azure Functions extensions.

• .NET Core 6, which is the target framework required for the next steps; you can download
the .NET 6 SDK from the official Microsoft site: https://dotnet.microsoft.com/
download/visual-studio-sdks.

In the next figure, we will enable Azure Functions extensions in Visual Studio Code:

Figure 4.16 – Azure Functions extensions

https://azure.com/free
https://dotnet.microsoft.com/download/visual-studio-sdks
https://dotnet.microsoft.com/download/visual-studio-sdks

Developing Azure functions 93

We will select the Azure icon in the activity bar. Next, in the AZURE area, we will select Create
new project:

Figure 4.17 – Create Function App in Azure…

We will enter a unique name for the new function app after we select the runtime stack, which is .NET
6 in our example. After that, we will select the location and then the resource group.

We can also create a local project and publish it to Azure. To do that, we use the same Azure icon and
select Create new project. After that, we need to provide all the information requested at the prompts:

• Select a language: Select C#

• Select a .NET runtime: Select .NET 6

• Select a template for your project’s first function: Select Http trigger

• Provide a function name: Type HttpExample1

• Provide a namespace: Type Functions1

• Authorization level: Select Anonymous, which enables anyone to call your function endpoint

• Select how you would like to open your project: Choose Add to workspace

Creating and Deploying a Function App in Azure94

If we need to execute the function, we will go to the AZURE area, and expand Local Project | Functions.
Right-click the function name and select Execute Function Now…:

Figure 4.18 – Execute function features

Previously, we created an Azure Functions app using Visual Studio 2022 and Visual Studio Code,
but we can also use the Azure portal to create Azure functions and add and run multiple functions
without implementing an application.

Creating an Azure Functions app in the Azure portal

We can create our Azure Functions app using different tools. In this section, we will create an Azure
Functions app by using the Azure portal.

Developing Azure functions 95

To create an Azure Functions app, we will open the Azure portal and select the resource related to
Azure Functions. The following figure presents the different configuration settings:

Figure 4.19 – Create Function App window

Creating and Deploying a Function App in Azure96

We will fill in all the information required to create a functions app in the following table (see Figure 4.18):

Setting Description
Subscription The subscription to use in order to create a new function app.
Resource group You can create a new resource group or select an existing one.
Function app name The name used to identify the function app. Characters that can be used

are a-z (case insensitive), 0-9, and -.
Publish Select code files or a Docker container.
Runtime stack Select the runtime that will support the function—for example, the C#

class library, the C# script, JavaScript, PowerShell, Java, and TypeScript.
Version Installed runtime version.
Region Select a region near you or near other services that the function will access.
Plan type We have three plans: Consumption plan, Premium plan, and Dedicated

plan. If you need more details related to these plans, you can check
this link: https://learn.microsoft.com/azure/azure-
functions/functions`-scale. We will use the Consumption
plan and pay only for functions app executions.

Table 4.1 – Settings and description to create an Azure Functions app

When the functions app is created, we will check the resource group. These resources are added to
the resource group:

• Application Insights

• Storage account

• Function app

• App Service plan

https://learn.microsoft.com/azure/azure-functions/functions-scale
https://learn.microsoft.com/azure/azure-functions/functions-scale

Developing Azure functions 97

In the following figure, we will select Functions under the Functions section:

Figure 4.20 – Functions settings

Creating and Deploying a Function App in Azure98

We will select an existing functions app, but we can add more functions:

Figure 4.21 – Selecting or creating a function

We can only use the portal to configure our Azure Functions. We can create a message in a queue
when a function is triggered using an output binding with an HTTP request:

Figure 4.22 – Creating a new function

Developing Azure functions 99

Select Code + Test. We have function.json, and to run it, we have to select Test/Run:

Figure 4.23 – Testing and running a functions app

Select Integration, and then select + Add output:

Figure 4.24 – Integration

Creating and Deploying a Function App in Azure100

We can add an input as a binding by selecting Add input. The input can be Azure Blob Storage, Azure
Cosmos DB, Azure Table Storage, Durable Client, Orchestration Client, or SignalR Connection Info:

Figure 4.25 – Adding an input binding

For output binding, we can select more types: Azure Blob Storage, Azure Cosmos DB, Azure Event
Hubs, Azure Queue Storage, Azure Service Bus, Azure Table Storage, HTTP, Kafka Output,
SendGrid, SignalR, and Twilio SMS:

Figure 4.26 – Adding an output binding

In this section, we added input and output bindings in an Azure Functions app.

Developing durable functions 101

When choosing between regular functions and durable functions, one of the key factors in the decision
is whether or not you’re implementing a sequential, multi-step workflow as part of your application.
If you have functionality in your app that depends on previous steps or specific states to trigger the
next steps, durable functions make several tricky parts of these workflows much easier. So, what are
durable functions, and how can we develop them?

Developing durable functions
In this section, we will describe the diverse types and patterns used for durable functions, and we will
explain the use of durable orchestrations, timers, and events. Azure Durable Functions is an extension
of Azure Functions that is used to write stateful functions. Durable Functions supports multiple
languages, such as C#, JavaScript, Python, F#, and PowerShell.

Later in this chapter, we will describe the common application patterns that can benefit from
durable functions:

• Function chaining

• Fan-out, fan-in

• Asynchronous HTTP APIs

• Monitor

• Human interaction

Now that we have defined durable functions and introduced the different patterns used, we will describe
durable functions in more detail and the different scenarios that require their use.

Introduction to durable functions

To implement more complex scenarios with serverless functions, we need a mechanism to allow us
to save the state during the execution of these functions.

This extension of functions allows us to write the stateful functions and define orchestrations of other
functions. It automatically handles the state, checkpoints, and restarts. There are several benefits of
using Azure Durable Functions in our projects.

We will start by building a stateful workflow to overcome the platform’s inherently stateless nature. Next,
the defined functions as orchestrators can invoke other functions synchronously or asynchronously.
The result of the functions invoked by the orchestrator can be saved as local variables. All the progress
made by the orchestrator and the rest of the functions is stored locally. We must ensure that we
never lose the state. This is part of the fundamental functionality of the platform. When the activity
functions are in bold, you can specify an automatic retry policy. The functions that are considered
orchestrators can be Service Orchestration, Resource Orchestration, and Lifecycle Orchestration.
There is a relationship of dependency and continuity between the functions. You can also run multiple
instances of an orchestrator function in parallel to each other functions. Orchestrator functions can
have multiple statuses, such as Started, Consulted, or Canceled. Finally, the Azure Durable Functions

Creating and Deploying a Function App in Azure102

extension is supported by the local Azure function and the SDK development tools that you already
have on your computer.

Implementing an orchestrator function

So, here, in the FunctionAppSample project, we will right-click and select the Add | New Azure
Function… option and name it FunctionOrchestrator:

Figure 4.27 – Adding a new Azure function

Now, we will use the Durable Functions Orchestration template, as presented in the following screenshot:

Figure 4.28 – Adding the Durable Functions Orchestration template

Developing durable functions 103

Don’t forget to add the Microsoft.Azure.WebJobs.Extensions.DurableTask NuGet
package, as presented in the following screenshot:

Figure 4.29 – Adding the Microsoft.Azure.WebJobs.Extensions.DurableTask package

You can implement your orchestrator according to your needs and add or delete the generated methods.

We can create an orchestrator function using the Azure portal. In Azure Functions, we will select
Functions from the left pane, then select Add from the top menu.

In the search field of our new function page, we can use the durable keyword and then select the
Durable Functions HTTP starter template.

We are requested to provide a function name. After, we can click on the Create function.

We implemented an orchestrator function using Visual Studio 2022, but let’s review some of the
orchestration patterns that Durable Functions provides. We will start with the function chaining pattern.

Function chaining

Function chaining is where we need to execute a sequence of activity functions following a specified
order. The orchestrator function will keep track of where we are in the sequence:

Creating and Deploying a Function App in Azure104

Figure 4.30 – Function chaining pattern

Durable Functions makes it easy to implement this pattern in your code. Another pattern will be
presented in the next section: fan-out, fan-in.

Fan-out, fan-in

Fan-out, fan-in is a pattern that runs multiple activity functions in parallel and then waits for all the
activities to finish. The results of the parallel executions can be aggregated and used to compute a final
result. This pattern is very hard to use without a framework such as Durable Functions:

Figure 4.31 – Fan-out, fan-in pattern

This pattern is much more challenging, but the Durable Functions extension handles it with simple code.

Asynchronous HTTP APIs

Asynchronous HTTP APIs are useful when you have an API that you need to repeatedly pull for
progress. We start a long-running operation, and then the orchestrator function can manage the
pulling until the operation has completed or timed out:

Developing durable functions 105

Figure 4.32 – Asynchronous HTTP APIs pattern

The Durable Functions runtime manages the state. We are not going to implement the status-tracking
mechanism. In the next section, we will explore the monitor pattern.

Monitor pattern

The monitor pattern implements a recurring process in a workflow, looking for a change in state. We
use this pattern to repeatedly call an activity function that’s checking to see whether certain conditions
are met:

Figure 4.33 – Monitor pattern

To create multiple monitors in order to observe arbitrary endpoints, we use Durable Functions with
a few lines of code. We will see the last pattern, human interaction, in the next section.

Creating and Deploying a Function App in Azure106

Human interaction

Human interaction is very common in business workflows to require manual approval where the
workflow must pause until a human has interacted in some way. This pattern allows workflows to
wait for certain events to be raised and then optionally perform a mitigating action if there’s a timeout
waiting for the human interaction:

Figure 4.34 – Human interaction pattern

A durable timer is used by the orchestrator function to request approval. If a timeout occurs, the
orchestrator will escalate. But the orchestrator keeps waiting for any external event—for example, a
notification generated by human interaction.

Summary
During this chapter, we learned about Azure Functions. We developed Azure Functions and durable
functions and learned how we deploy them in Azure Functions. We explored how we create a function
using the portal, Visual Studio 2022, and Visual Studio Code.

In the next chapter, we will learn about Azure Service Fabric’s main benefits, as well as how to build
Service Fabric applications for the cloud or on-premises.

Questions
1. Do we need to add more packages for Durable Functions?

2. What are durable functions in Azure?

5
Develop an Azure Service

Fabric Distributed Application

Enterprises face challenges in moving to the cloud and navigating cloud-based application optimization
by considering latency, monitoring, and governance issues.

When we build a complex, scalable distributed application and would like to use a solid platform to
host, build, and run it with high availability and low latency, we can use Azure Service Fabric because
it is suitable for applications looking for robustness, reliability, scalability, and resilience.

In this chapter, you will learn about the essential concepts of Azure Service Fabric, the main benefits,
as well as how to build Service Fabric applications for the cloud or on-premises. We will deploy our
solution on Azure Service Fabric.

In this chapter, we’re going to cover the following main topics:

• Exploring Azure Service Fabric

• The Azure Service Fabric development environment

• Exercise 1 – creating a Service Fabric cluster using the Azure portal

• Exercise 2 – creating a Service Fabric cluster using the Azure CLI

• Exercise 3 – scaling an Azure Service Fabric cluster

• Exercise 4 – creating a .NET Service Fabric application

• Exercise 5 – deploying an app to a Service Fabric managed cluster and containers

Develop an Azure Service Fabric Distributed Application108

Exploring Azure Service Fabric
We can consider three categories of Azure services to deploy cloud-based applications:

• Platform as a Service (PaaS): This provides a hosted environment in which users can meet
various computing needs. Users are able to develop, manage, and run applications on the
platform while the PaaS provider manages the infrastructure. Azure offers PaaS services such
as Service Fabric and Azure App Service.

• Container as a Service (CaaS): The emergence of virtualization has transformed the IT industry,
allowing people to run different operating systems simultaneously on a single computer. This
has improved efficiency and improved performance. However, virtualization is not without
its drawbacks. A separate operating system is required for a virtual environment to function.
As a result, it takes up a lot of disk space. CaaS was born as a means of offloading hardware
resources. CaaS providers give users access to containerized applications or clusters. Azure offers
CaaS services such as Azure Service Fabric, Azure Container Instances, Azure Kubernetes
Service, which is a container orchestrator containing microservices that are easy to manage,
and Azure Container Apps.

• Function as a Service (FaaS): FaaS is a type of cloud computing service that allows code to
be implemented in response to events without extensive code infrastructure changes. It is
recommended for users who only need the cloud for individual functions within the app. Users
do not need to build the infrastructure normally required for app development.

The following diagram presents the different services used for every type: PaaS, CaaS, and FaaS. Azure
Service Fabric can be used as a PaaS and for containerized applications as a CaaS.

Figure 5.1 – Azure container services

In this section, we discussed the different Azure services to build and deploy container applications.
In the next section, we will define Service Fabric and the different services using Service Fabric.

Exploring Azure Service Fabric 109

Definition

Azure Service Fabric allows you to create modern, resilient, and scalable software solutions, with
features required to build a robust system, such as autoscaling, health monitoring, and fault tolerance.

The Service Fabric platform offers a programming model that you can use to create reliable services
or components based on the actor model. For containerized applications, Service Fabric also supports
Docker containers so that you can use the platform as an orchestrator. Azure Service Fabric is able
to run on any operating system (Windows or Linux). Additionally, it can run in any environment,
on-premises as a private cloud or on a public cloud such as Azure or any other cloud provider, such
as AWS or Google Cloud Platform, or in the local development environment of a developer. It offers a
complete set of development tools and software development kits (SDKs) to start building solutions
on the platform very quickly. These tools can be used in a development environment or in a production
environment. The cloud has allowed the evolution of software architectures and development platforms
for distributed systems. Azure Service Fabric is not new. It is an open source project that is used in
many services in the Azure infrastructure as well as other Microsoft services. In fact, it has existed
since the beginning of Azure, when it was still called Windows Azure. Within Microsoft, this platform
is strategic and fundamental since many cloud services use it, such as Azure SQL Database, Azure
Cosmos DB, Azure DevOps, Dynamics 365, Power BI, and many more. The following diagram depicts
the different Microsoft services and tools that use Service Fabric.

Figure 5.2 – Powering Azure and Microsoft services with Service Fabric

But how does Azure Service Fabric work? In the next section, we will present the core functionality
of Azure Service Fabric, which is based on two essential concepts: clusters and nodes.

Develop an Azure Service Fabric Distributed Application110

Clusters and nodes

A Service Fabric cluster is a network-connected set of virtual machines (VMs) in which your
microservices are deployed and managed.

A cluster is a set of connected nodes that are VMs, which form a highly available and highly reliable
execution environment in order to run services and applications.

Service Fabric supports any number of nodes in a cluster but the number depends on the use of the
cluster. For example, in the development phase, one node is used, but in production, you need to have
more than five. To deploy a Service Fabric instance in a cluster, we have to install it in one of the nodes.
Then, the Service Fabric instance will replicate itself to the remaining nodes in the cluster automatically.

Every node has an operating system, Windows or Linux, with a runtime. A node can host multiple
applications – it depends on the resource available in the VM.

In an Azure Service Fabric deployment, the load balancer is used to detect healthy nodes by sending a
request to them and avoids any unhealthy nodes. To deploy an application, we can use the load balancer
because it routes the request to one of the available nodes. Then, Service Fabric will replicate the
application to the remaining nodes. Service Fabric acts like a scheduler. In the end, once the application
is deployed, the load balancer will route the requests to one of the healthy available nodes so that the
application can respond. This is why you can run Service Fabric applications in any operating system.

The following figure shows a stateless service with four instances distributed across a cluster using
one partition. Note that partitioning is a concept that enables data storage on a local machine. It
consists of decomposing state, which is data, and also computer resources into smaller units to ensure
scalability and performance.

Figure 5.3 – An instance of a stateless service across a cluster

The Azure Service Fabric development environment 111

We have three main features that emerge from this scenario, thanks to redundant servers: we ensure
availability, the creation of several replicas of data, as well as an evolution in terms of the partitioning
of services ensuring reliability. Partitioning is a key feature of the reliable services programming
model. Service Fabric is undoubtedly an excellent option for hosting and running the most critical
software solutions.

The differences between Service Fabric and Kubernetes

Containers are used in cloud-native applications. This technology has impacted the software development
industry and has changed how systems are designed, operated, distributed, and monitored. If we
have multiple containers to manage, we need an orchestrator so that we’ll have various container
orchestrators. One of the main features of an orchestrator is container life cycle management, such
as container provisioning, the scaling of existing containers, and resource allocation. Kubernetes is
one of the most widely used container orchestrators in the industry.

The main difference between Kubernetes and Service Fabric is that Service Fabric has three mechanisms
to deploy and run applications:

• A propriety programming model that you can optionally use in your applications: This
programming model allows you to build a stateful or a stateless reliable service, and also reliable
actors. The actor model is based on having distributed objects that communicate with each
other through messages.

• The use of containers: Both Linux and Windows containers are supported.

• The use of any secure build with any platform and any language, with no modification
required at all: Kubernetes supports both Linux and Windows containers. Likewise, Microsoft
Azure includes Azure Kubernetes Service, which is a fully managed platform for Kubernetes.

The Azure Service Fabric development environment
We have many different options to adopt Service Fabric. Service Fabric is a free, open source project
whose source code is available on GitHub. Service Fabric supports three different execution environments:

• On-premises environment: You can install Service Fabric locally on your servers or VMs. This
scenario is suitable for the first cloud migration of your workloads.

• Public cloud: Azure Service Fabric allows cluster creation. Note that we have the same Service
Fabric functionalities as the previous environment because we can use the same runtime and SDK.

• Public cloud with other providers: We can install Service Fabric on any VM using any
operating system.

Develop an Azure Service Fabric Distributed Application112

We can consider another environment using containers as if they were nodes of a cluster. As we said
before, Service Fabric is open source so it is free. However, if you deploy to a cloud provider, then you
pay for the computing resources that you provision.

Let’s now talk about the development environment and the prerequisites. We will present the different
tools used to build and deploy a .NET application. The Service Fabric SDK also supports the Java
programming language and is able to host any executable, regardless of the platform or language
used to build it.

We must meet these prerequisites in order to be able to configure the development environment to
create a Service Fabric cluster:

• Windows 10 or 11, which supports Hyper-V, is required for Docker installation

• Visual Studio 2022 or 2019, or Visual Studio Code

• The .NET Core SDK

• Microsoft Service Fabric SDK

• Docker tools for Windows

• The Azure CLI

You can download Visual Studio from https://visualstudio.microsoft.com/. The
Community Edition is always free to use and includes Service Fabric templates. You can also use the
other editions.

To download and install the Service Fabric SDK, use this link: https://www.microsoft.com/
web/handlers/webpi.ashx?command=getinstallerredirect&appid=Microsof
tAzure-ServiceFabric-CoreSDK.

You can download Docker for Windows from the Docker website.

Use this link to install Docker Desktop and to create an account in Docker Hub: https://www.
docker.com/get-started/.

Finally, we will install the Azure CLI tool; you can use this link to install it for Windows: https://
aka.ms/installazurecliwindows.

Now, we have all the required software to build a Service Fabric application.

Let’s check the installation now. We will press Start and type fabric to search for Service Fabric Local
Cluster Manager. Then, press Enter in order to set up a local cluster as presented in the following figure:

https://visualstudio.microsoft.com/
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.docker.com/get-started/
https://www.docker.com/get-started/

The Azure Service Fabric development environment 113

Figure 5.4 – Service Fabric Local Cluster Manager

From the system tray, we will right-click the Service Fabric icon, as presented in the next screenshot.
Then, we will navigate to Setup Local Cluster to select the number of nodes: we have the 1 Node or
5 Node options for a Windows or Linux environment. When we select the number of nodes to use,
we wait for a few seconds until we see the Service Fabric Local Cluster Manager setup completed
successfully notification.

Develop an Azure Service Fabric Distributed Application114

Figure 5.5 – Setup Local Cluster

We will select Manage Local Cluster to open Service Fabric Explorer. We can take a look at the cluster
configuration. I selected a single node, for testing purposes, with less memory. In the next figure, we
can see that our local environment uses 1 Node and is just a virtual node running on my machine.

Figure 5.6 – The Service Fabric Explorer window

Exercise 1 – creating a Service Fabric cluster using the Azure portal 115

You can create an application using the Service Fabric template in Visual Studio 2022. Select any
application type, then compile it, and the application will be added to the explorer. It’s another method
to verify whether your cluster is configured or not.

Figure 5.7 – Service Fabric template in Visual Studio 2022

We can deploy any application locally and we can debug the clusters using Service Fabric Explorer.
Service Fabric Explorer is a monitoring tool used by developers. We can also deploy our cluster
remotely on Azure Service Fabric. We will see in the next section how we can create an Azure Service
Fabric cluster.

Exercise 1 – creating a Service Fabric cluster using the
Azure portal
In Azure, we will navigate to the main page of the Azure portal. From there, we will select the Create
a resource button, and then we will search for Fabric. Or, just select Containers on the left of the
window and, in the end, we will find Service Fabric Cluster, as shown in the following figure. Let’s
select Service Fabric Cluster, then click on the Create button.

Develop an Azure Service Fabric Distributed Application116

Figure 5.8 – Select Service Fabric Cluster

Next, we will specify some general information about the cluster in the Basics blade. We will select
the subscription and an existing resource group; you can also add a new one. We’re going to use
hospitalmanagement as the name. Remember to select a location close to your current location.
Also, you can specify the operating system that you want to use. In this case, we’re going to use
WindowsServer2019-Datacenter-with-Containers. However, you can select any other operating
system version that you want, such as Linux. We will set the credentials for the VMs.

Exercise 1 – creating a Service Fabric cluster using the Azure portal 117

Figure 5.9 – Step 1 – Create Service Fabric cluster

Now, we will complete the cluster configuration related to the primary node. We will set up the initial
VM scale set capacity, then we will define the node types. Node types allows you to define different
hardware configurations and also allows you to specify a different scale. In our case, we will select
the default values.

Develop an Azure Service Fabric Distributed Application118

Figure 5.10 – Step 2 – Create Service Fabric cluster

Now, in the Security blade, we’re required to select or create an Azure Key Vault resource where we
will store certificates. So, let’s click on this option and we will create a new key vault. Let’s name this
servicefabrickeycert, for example. We will select the same resource group as we selected
for Service Fabric. After, we will click on the Create button. So, now the Azure portal will deploy
this Azure Key Vault resource because it’s required in order to create the certificate and store it there.

Figure 5.11 – Select certificate from Azure Key Vault

After the key vault is provisioned, you will see a message that says that it’s not enabled for deployment,
so we need to click on the Edit access policies button. The key vault has to be enabled for deployment.

Exercise 1 – creating a Service Fabric cluster using the Azure portal 119

To enable the key vault, we need to edit the access policies for the key vault by selecting the Enable
access to Azure Virtual Machines for deployment option, located in the advanced access policies
section, and clicking Save.

Figure 5.12 – The edit access policies for the key vault and the certificate

Important note
The certificate must be stored in Azure Key Vault in the same subscription and region as the cluster.

In the Node types tab, we can specify how many VMs we want in our scale set. As you can see, here
we’re using the value of five. Also, you can specify a single-node cluster.

Figure 5.13 – Step 3 – Create Service Fabric cluster – Node types tab

Develop an Azure Service Fabric Distributed Application120

This process will take a few minutes to complete. If we want to simplify the creation of a Service Fabric
cluster using interactive mode, we will use the portal. However, we can also create it using the Azure
CLI. This is what we will look at in the next section.

Exercise 2 – creating a Service Fabric cluster using the Azure CLI

Another option that we can use to create Azure Service Fabric clusters is the Azure CLI tool. You can
open PowerShell if it is installed on your machine, or open Azure Cloud Shell using this link: https://
shell.azure.com/.

You can find the entire sample command line on GitHub by following this link: https://github.
com/PacktPublishing/A-Developer-s-Guide-to-Building-Resilient-Cloud-
Applications-with-Azure/tree/main/Chapter5.

We will use PowerShell; we will type this command line to create a new cluster:

az sf cluster create -g packtrg -c hospitalmanagement -l estus
--cluster-size 5 --vm-password Password#1234 --certificate-
output-folder MyCertificates --certificate-subject-name
hospitalmanagement

We can use Key Vault Certificate and a custom template to deploy a cluster as follows:

az sf cluster create -g packtrg -c hospitalmanagement -l
estus--template-file template.json \

 --parameter-file parameter.json --secret-identifier
https://{KeyVault}.vault.azure.net:443/secrets/{MyCertificate}

To create a new Azure Service Fabric cluster, we can use one or more properties mentioned here:

az sf cluster create --resource-group

 [--cert-out-folder]

 [--cert-subject-name]

 [--certificate-file]

 [--certificate-password]

 [--cluster-name]

 [--cluster-size]

 [--location]

 [--os {UbuntuServer1604,
WindowsServer1709, WindowsServer1709withContainers,
WindowsServer1803withContainers,
WindowsServer1809withContainers,
WindowsServer2012R2Datacenter, WindowsServer2016Datacenter,

https://shell.azure.com/
https://shell.azure.com/
https://github.com/PacktPublishing/A-Developer-s-Guide-to-Building-Resilient-Cloud-Applications-with-Azure/tree/main/Chapter5
https://github.com/PacktPublishing/A-Developer-s-Guide-to-Building-Resilient-Cloud-Applications-with-Azure/tree/main/Chapter5
https://github.com/PacktPublishing/A-Developer-s-Guide-to-Building-Resilient-Cloud-Applications-with-Azure/tree/main/Chapter5

Exercise 3 – scaling an Azure Service Fabric cluster 121

WindowsServer2016DatacenterwithContainers,
WindowsServer2019Datacenter,
WindowsServer2019DatacenterwithContainers}]

 [--parameter-file]

 [--secret-identifier]

 [--template-file]

 [--vault-name]

 [--vault-rg]

 [--vm-password]

 [--vm-sku]

 [--vm-user-name]

Once created, you can list the cluster resources using this command or just check the Azure portal:

az sf cluster list [--resource-group]

After a cluster’s creation, sometimes we need to scale it. In the next section, we will learn how to scale
an Azure Service Fabric cluster.

Exercise 3 – scaling an Azure Service Fabric cluster
There are three mechanisms to scale a Service Fabric cluster.

Manual scaling

The first one is to manually specify the number of node instances that you want. So, let’s navigate
to the VM scale set resource. We need to select the resource group that includes the Service Fabric
instance. Then, select Virtual machine scale set as the type, as presented in the following screenshot.

Develop an Azure Service Fabric Distributed Application122

Figure 5.14 – Virtual machine scale set resource type

We will click to open it. In the Settings section, you will find the Scaling option.

Figure 5.15 – The Scaling settings

Exercise 3 – scaling an Azure Service Fabric cluster 123

As shown in the preceding screenshot, the default option is Manual scale but you can specify the
number of node instances. In the figure, we have 5 node instances, but we can set it to 20, for example.
After saving this option, the VM scale set will increase from 5 to 20 instances.

Custom autoscaling

The second option is to use custom autoscaling. If you select this option, you can specify a rule for
scaling in the Custom autoscale window, as shown in the following screenshot:

Figure 5.16 – The Custom autoscale window

We can add a scale condition. We have an auto-created scale condition by default, but we can combine
multiple conditions to automate the scaling:

Figure 5.17 – Create a scale condition

The rules are based on a metric that you choose to determine whether the cluster needs to scale up or
down. For example, based on the percentage CPU value in the last 5 minutes, if it’s greater than 75,
we will increase the count by 1. You can save at the end by clicking on the Save button.

Develop an Azure Service Fabric Distributed Application124

Coding your scaling

The third option is to scale programmatically. In other words, you create code that increases or
decreases the number of instances in your cluster.

Having created our cluster and configured the scaling, we will now learn how we can create a .NET
Service Fabric application.

Exercise 4 – creating a .NET Service Fabric application
Service Fabric supports multiple application models. It’s a flexible technology that allows you to
host and execute any workload. After installing the Service Fabric SDK, you will be able to use its
available templates.

When we run Visual Studio 2022 and select Service Fabric template, many models appear, as shown
in the screenshot:

Figure 5.18 – Service Fabric template models

We will start with an application model that is considered to have reliable services. These services use
the native API of Service Fabric. We have three different types of reliable services: stateless, stateful,

Exercise 4 – creating a .NET Service Fabric application 125

and actors. The difference between stateful and stateless services is that in stateless services, no state
is maintained in the service, but for stateful services, the state is stored with the service.

Moreover, we can use both .NET Core and .NET Framework runtimes to build reliable services. This
is why we can use Service Fabric to migrate old applications. An actor is a dependent computing unit
that runs on a single thread. The actor model is intended for concurrent or distributed systems since a
large number of these actors can run simultaneously and independently of each other, communicating
through messages.

Another application model is containers. Both Linux and Windows containers are supported in
Service Fabric.

There is also the guest executable model. It allows us to bring any type of executable that we have built
on any development platform and with any programming language to Service Fabric.

With these application models, we can use Service Fabric in any scenario that requires high availability,
reliability, and a robust platform to deploy and run our applications.

We’re going to create a sample solution based on Service Fabric’s Stateless Reliable Services. The
application is used for managing hospitals around some countries in Africa and Europe.

Creating a Service Fabric application

Let’s go back to Visual Studio 2022. When we select Create a new project, we need to configure the
project by specifying the name, the location, the solution name, and the framework. After, we will
click on the Create button.

Figure 5.19 – Creating a Service Fabric application

Develop an Azure Service Fabric Distributed Application126

After this, we will select the Stateless Service ASP.NET Core, which will use the .NET Core runtime.
As presented in the following figure, we will specify the service name and the location (optional) and
then we click on Create.

x

Figure 5.20 – Stateless Service on Azure Service Fabric

In the next window, we can select the application type. We will select ASP.NET Core Web
App (Model-View-Controller).

Exercise 4 – creating a .NET Service Fabric application 127

Figure 5.21 – Create a new ASP.NET Core web application with Service Fabric

We will explore the solution tree. We have two projects. The first project is the application itself and
the second one is the service.

Figure 5.22 – The hospital management solution structure

Develop an Azure Service Fabric Distributed Application128

In the application, you will find .xml files that represent metadata about the application. For example,
inside ApplicationPackageRoot, we will find the ApplicationManifest.xml file, which
represents the entire application because it includes the reference to all the services that constitute
the application. In the PackageRoot folder inside the HospitalService project, you will find
the ServiceManifest.xml file. Each service has its own manifest. The ServiceManifest.
xml file contains a ConfigPackage element. Find the Resources element and the endpoints that
this service will listen with. In this case, we only have a single endpoint.

Figure 5.23 – ServiceManifest.xml

If we check our application in ASP.NET Core, in Program.cs, the service is registering itself to
Service Fabric using this line of code:

ServiceRuntime.RegisterServiceAsync("HospitalServiceType",

 context => new HospitalService(context)).
GetAwaiter().GetResult();

The HospitalService class is inheriting from StatelessService, which is one
of the base classes in the Service Fabric API. We have two methods for listeners. The first one
is CreateServiceInstanceListeners. It is returning a collection of listeners,
ServiceInstanceListener, based on Kestrel. Kestrel is the web server included in .NET
Core. In other words, this service is able to receive HTTP requests.

Exercise 4 – creating a .NET Service Fabric application 129

Deploying the application in a local cluster using Visual Studio

To deploy the application in a local cluster, we will use the Publish tool of Visual Studio. Right-click
on the application with the Service Fabric icon and select Publish. In the target file, we will select the
number of nodes configured in our cluster. In this case, we configured a single node in the connection
endpoint. Ensure that your application will publish to a local cluster. In the end, the .xml files that
include the application parameters and the startup service parameters are requested to finish the
publishing process.

Figure 5.24 – Deploying a .NET application in a local Service Fabric cluster

Develop an Azure Service Fabric Distributed Application130

Click on the Publish button, then we will check our application in Service Fabric Explorer.

Figure 5.25 – Service Fabric Explorer – application deployment

A solution includes multiple services. To fully take advantage of the Service Fabric platform, we need
to communicate from one service to another. To do this, we can implement an interface or API, for
example. In this case, the interface is the public-facing API for all the services that want to invoke the
hospital’s functionality. Another service, such as a search service, can use the same interface. Both
services are going to reference the interface. In a microservices architecture, it’s perfectly valid to invoke
one service directly from another. You can do this through the HTTP protocol and by exposing an
API from the target microservice.

Exercise 5 – deploying an app to a Service Fabric managed
cluster and containers
When the application is tested and deployed locally, we can publish it remotely to the Azure Service Fabric
instance that we created previously. To do that, we will use the same publishing tool in Visual Studio.

Exercise 5 – deploying an app to a Service Fabric managed cluster and containers 131

Deploying an ASP.NET Core application to Azure Service Fabric

Right-click on the application, then select Publish. In the target profile, we will select
PublishProfiles\Cloud.xml. We will select the account related to the Azure portal. In the
connection endpoint, we can select an already created Azure Service Fabric cluster or you can create
your cluster using Visual Studio. To do that, we will click on Add Custom Endpoint.

Figure 5.26 – Add Custom Endpoint

Next, we will add value to the endpoint. After following the previous steps to create the cluster, we
will click on Create a new Cluster. The following figure shows the window for creating a Service
Fabric cluster:

Develop an Azure Service Fabric Distributed Application132

Figure 5.27 – Create Service Fabric Cluster

We need to define the cluster name, select the subscription and location, define the number of nodes,
and select an existing resource group or create a new one. We need to fill in all of the information for
every tab. For the Certificate tab, we need to add the certification information needed. In VM Detail,
we will configure the VM that is used by the cluster. In Advanced, we need to add ports. After that,
we will click on Create.

A new cluster will be created. At the bottom of the window, we need to select the application parameter
files and the startup service parameter files that will be used for the cloud, so we will select Cloud.
xml. This configuration ensures that each service is going to be deployed to all the nodes in the cluster.
After this, we will click on Finish.

Building and executing a Docker container in Service Fabric

Another application model supported in Service Fabric is the use of Docker containers.

Containers are an ideal complement to the microservices architecture, thanks to the fact that they are
isolated and lightweight processes.

Exercise 5 – deploying an app to a Service Fabric managed cluster and containers 133

Let’s create a new Service Fabric application. First, we need to select a container template, set the
service name, and specify the container image name. The image has to be reachable. The container
image can be a public image in Docker Hub, for example, or a private image in Azure Container
Registry or any private registry. In this case, we need to add a username and a password. You can also
specify the host port and the container port that you want to use; for example, we can use port 80.
Then, we will click on Create.

Figure 5.28 – Azure Service Fabric for containers

This type of application model doesn’t add a service project since you won’t write any code. This is
because all the code is already inside the container. If we expand the service manifest for the package,
the ContainerHost element contains the image name. Optionally, you can also set environment
variables in the container using the EnvironmentVariables element. Locally, we can deploy this
type of application in the local cluster. Remotely, you can deploy the application to Azure Service Fabric.

If you need to learn about creating a container, you can check out this book: A Developer’s Guide to
Cloud Apps Using Microsoft Azure by Packt Publishing.

Develop an Azure Service Fabric Distributed Application134

Summary
In this chapter, we talked about the Azure Service Fabric platform. We explored the different elements of
Service Fabric, such as clusters and nodes, the main difference between Service Fabric and Kubernetes,
and we prepared a development environment to create and deploy an application.

We created a Service Fabric application using the Azure portal and the Azure CLI, we learned about
scaling an Azure Service Fabric cluster, and we discovered more about the different models of Service
Fabric template in Visual Studio 2022. We also created a .NET Service Fabric application, and we built
and executed a Docker container in Service Fabric.

To publish our applications to Azure Service Fabric, we used the Publish tool in Visual Studio.

Applications use a database. In the next chapter, we will learn about the different classifications of data
and how data is defined and stored. We will identify the characteristics of relational and non-relational
data and the different Azure services for databases.

We will also explain the use of Azure Storage, Azure SQL Database, and Azure Cosmos DB, or a
combination of them, to determine the operational needs, latency requirements, and transaction
requirements of your data.

Questions
1. What is an Azure Service Fabric cluster?

2. What is the difference between Kubernetes and Service Fabric?

3. How do we deploy a containerized application on Azure Service Fabric?

6
Introduction to

Application Data

Our ability to collect and process large amounts of data has grown over the years as technology has
allowed us, as humans, to gather and collate significant amounts digitally. This has then enabled us
to analyze large datasets from longer time periods and produce meaningful information that can
improve or help to solve a problem and understand the cause.

In this chapter, we will cover the use of Azure Storage, Azure SQL Database, and Azure Cosmos DB,
or a combination of them, to determine the operational needs, latency requirements, and transaction
requirements for your data. We will present a microservices solution that includes some web APIs,
and each API will use a different data service.

In this chapter, we’re going to cover the following main topics:

• An overview of data classification and data concepts

• Exploring relational data concepts in Azure

• Exploring non-relational data concepts in Azure

• Exploring modern data warehouse analytics

• Getting started building with Power BI

An overview of data classification and data concepts
At some point in the design and implementation of your application, the developer or architect needs
to determine the type, format, and location of the data to collect.

Data is a strategic, valuable asset. A holistic approach to data storage and data processing and an
openness to new ideas can lead to incredible possibilities for taking applications to a new level and
ensuring a stable and organized data stock.

Introduction to Application Data136

Data is a set of collected information and facts, which can be numbers, character strings, and/or
observations, to help us in decision-making. We can classify data into two classes, structured and
semi-structured (unstructured):

• Structured data: This is tabular data that follows a schema, which implies that all data has the
same properties, called fields. Structured data can be stored in a database table. To search for
data inside a table that shares the same schema, we have query languages such as Structured
Query Language (SQL). A table is made up of rows and columns.

• Unstructured data: This is also called semi-structured data. It does not fit in tables, rows, and
columns, and does not reside in a relational database, but still has some structure because it
uses a data serialization language. Semi-structured data uses tags or keys that organize and
provide a hierarchy for databases and graphs. We can also use the JavaScript Object Notation
(JSON) format.

Important note
Semi-structured data is also known as non-relational or not only SQL (NoSQL) data.

Exploring relational data concepts in Azure
Relational database systems allow us to store and manage transactional and analytical data in
organizations of all sizes around the world.

In a relational database, we model collections of entities from the real world as tables. Let’s take the
example of a solution for booking an appointment with a selected doctor. We might create a table
for patients, doctors, and appointments. Every table will include rows, and each row will represent a
single instance of an entity. Each row in a patient table contains the data for a single patient, each row
in a doctor table defines a single doctor, and each row in an appointment table represents a patient
that booked an appointment with a specific doctor. We will get more information related to the time
and date of the appointment.

SQL is used to represent and search for data in a relational database. Common SQL statements used
are SELECT, INSERT, UPDATE, DELETE, CREATE, and DROP to accomplish multiple tasks that
need to be done in a database.

Microsoft Azure provides several services for relational databases, allowing you to run popular
relational database management systems, such as SQL Server, PostgreSQL, and MySQL, in the cloud.
You can select the relational database management system that best suits your needs and store your
relational data in the cloud.

Most Azure database services are fully managed, which means that we save time by not having to
manage databases. They have enterprise-class performance with built-in high availability that lets
you scale quickly and achieve global distribution without caring about costly downtime. Developers

Exploring relational data concepts in Azure 137

can take advantage of industry-leading innovations such as built-in security with automatic threat
detection and monitoring, which automatically adjusts to improve performance. In addition to all
these features, you have guaranteed uptime.

When you decide to migrate your database to Azure or extend your on-premises SQL Server
solution, you can move it to a virtual machine. We can use SQL Server for Azure virtual machines,
for example. It allows you to run full instances of SQL Server in the cloud without having to manage
on-premises hardware. However, this approach, known as lift and shift or infrastructure as a service,
is not recommended because you have to manage your database. Azure offers a Platform as a Service
(PaaS) that contains a series of Database Management Systems (DBMSs) managed by Microsoft in
the cloud. Let’s explore them!

We will start with Azure SQL Managed Instance. This is a PaaS option that is compatible with
on-premises SQL Server instances while abstracting the underlying hardware and operating system.
This service includes the automatic management of software updates, backups, and other maintenance
tasks, reducing administrative costs when supporting database server instances.

We also have Azure SQL Database, which is a fully managed database designed for the cloud and is
a highly scalable PaaS database service. You are able to create a managed database server in the cloud,
and then deploy your databases on this server. This service contains the core database-level capabilities
of SQL Server on-premises but not all its features. It is recommended to use it when building new
cloud-oriented applications.

We have three options for Azure SQL Database:

• The first is a single database that allows you to set up and run a single SQL Server database.

• The second is an elastic pool. This is similar to a single instance – however, by default, several
databases can share the same resources, such as memory, processing power, and data storage space.

• The last is a managed instance, which is a fully managed database instance designed for the
easy migration of on-premises SQL databases.

These deployments have three different service tiers that you can choose from:

• General Purpose: Designed for standard workloads, this is the default tier.

• Business Critical: Designed for high-throughput applications and online transaction processing
(OLTP), this tier offers high resilience and the best performance with low latency.

• Hyperscale: This is an extension of the Business Critical tier. This tier is designed for large-
scale OLTP deployments with autoscaling for compute resources such as compute and storage.

Now we have covered the different concepts of relational data in Azure, we’ll move on to talking about
Azure SQL Edge, which is an SQL engine that is optimized for Internet of things (IoT) scenarios
that need to work with streaming time-series data.

Introduction to Application Data138

Exploring non-relational data concepts in Azure
When we start building a new application, we need to think about how to store data. This usually
takes the form of a relational database, where data is organized in linked tables and managed using
SQL. However, many applications don’t need the rigid structure of a relational database; we can use
non-relational storage (commonly known as NoSQL).

Let’s explore some characteristics of non-relational data. Non-relational data doesn’t follow the rules
of relational data. In its native form, data can be loaded quickly. If you have unknown data or queries,
non-relational data will be more flexible and better than relational data, but it is less good for known
data structures and known queries.

Entities have highly variable structures. For example, in a medical appointment database that stores
information about patients, a patient can have more than a telephone number, landline, and mobile
number. They can add multiple telephone numbers, such as a business number and another home
phone number. Similarly, the addresses of patients might not always follow the same format. Addresses
can be different according to states, regions, postal codes, and countries.

Let’s discuss another scenario. If you ingest data, you want the process of capturing the data and saving
it to be fast. When you want to process data and manipulate it in a set of rows in several tables of a
relational database, at this stage, choosing a relational database is not appropriate because we have
to transform the unstructured data into a compatible format before storing it in the database, which
can cause latencies; even the search for information will be difficult to manage.

The entities will be stored in a set of collections or a container, not in a table like relational databases –
but if we have two entities in the same collection, what happens? They will have a different set of fields,
not like a set of columns in a relational table. The absence of a fixed schema leads to a description for
each entity. For example, a non-relational collection of patient entities might look like this:

Patient 1
ID: 1
Name: Hamida Rebai
Telephone: [Home: 1-444-9999999, Business: 1-555-5555555,
Mobile: 1-444-4444444]
Address: [Home: 2110 Rue De La Cantatrice Quebec, G2C0L6,
Canada,
Business: Marly Quebec G1X2Z2]
Patient 2
ID: 2
Title: Mr
Name: Rayen Trabelsi
Telephone: [Home: 0044-1999-333333, Mobile: 0044-17545-444444]
Address: [FR: 86 High Street, Town X, County Y, 15000, FR,
US: 333 7th Street, Another Town, City A, CA, 11111]

Exploring modern data warehouse analytics 139

In the previous example, we have fields that are preceded by a name. These fields can have one or
more sub-fields, the same as for names. Brackets have been used to identify subfields of fields. If we
want to add a new patient, we need to insert an entity with its fields labeled in a meaningful way. If
an application queries this data, the application must have the ability to parse the information in the
retrieved entity.

Entities inside a collection are usually stored in key-value format. The simplest type of non-relational
database allows an application to specify a unique key or set of keys as a query condition. In the patient
example, the database allows the application to query the patient by identity (ID) only.

To filter the data based on other fields, you need to scan the entire collection of entities and analyze
each entity in turn, and then apply any query criteria to each entity to find a match. A query that
retrieves patient details by identity can quickly identify the whole entity. A query that tries to find all
customers with FR addresses must iterate over each entity and examine each field of each entity in
turn. If the database includes 1 million entities, this query could take a long time to execute.

Now we have covered the different concepts of non-relational data in Azure, we’ll move on to talking
about modern data warehouse analytics.

Exploring modern data warehouse analytics
In the age of data mining, most organizations have multiple data stores, often with different structures
and varying formats because we may need to collect data from multiple resources. They often have
live incoming streams of data, such as sensor data in the case of IoT solutions and it can be expensive
to analyze this data. There is often a wealth of useful information available outside the organization.
This information could be combined with local data to add insights and enrich understanding. By
combining local data with useful external information, it’s often possible to gain insights into the
data that weren’t previously possible. The process of combining all of the local data sources is known
as data warehousing. The process of analyzing streaming data and data from the internet is known
as big data analytics. Azure Synapse Analytics combines data warehousing with big data analytics.

In this section, we will explore the different concepts of data warehousing. We will discuss the Azure
data services to be used for modern data warehouses and the data warehouse architecture and workload.

Exploring data warehousing concepts

A modern data warehouse might contain a mixture of relational and non-relational data, including
files, social media streams, and IoT sensor data. Azure provides a collection of services you can use
to build a data warehouse solution, such as Azure Data Factory (ADF), Azure Databricks, Azure
Synapse Analytics, Azure Data Lake Storage, and Azure Analysis Services. You can use tools such as
Power BI to analyze and visualize the data, generating reports, charts, and dashboards.

Any modern data warehouse solution should be able to provide access to raw data streams and business
insights from that data.

Introduction to Application Data140

Azure data services for modern data warehouses

In this section, we will further discuss the data services provided by Azure. These services allow you
to combine data from multiple sources, reformat the data into analytic models, and save those models
for later queries, reports, and visualizations.

To implement a modern data warehouse using Azure database services, we will use these services:

• ADF is an Azure cloud-based data integration PaaS solution that allows you to orchestrate and
automate data movement and data transformation. Data integration is the process of combining
data from multiple sources and providing an integrated view of it.

• Azure Data Lake is built on Azure Blob Storage, Microsoft’s object storage solution for the
cloud. This solution features cost-effective tiered storage and high availability/disaster recovery
capabilities. It integrates with other Azure services such as ADF, a tool for creating and running
extract, transform, load (ETL), and extract, load, transform (ELT) processes.

• Azure Databricks is a cloud-based platform that leverages Spark for big data processing
with built-in SQL database semantics and management interfaces for rich data analytics and
machine learning. It is a cloud-integrated version of Azure for the Databricks platform. With
Databricks, we are able to use existing Databricks and Spark skills to create an analytical data
store. We can also use Azure Databricks’ native notebook support to query and visualize data
in an easy-to-use web-based interface.

• Azure Synapse Analytics is an integrated end-to-end solution for data analytics at scale. It
includes multiple technologies and capabilities to combine the data integrity and reliability of
a scalable, high-performance SQL Server-based relational data warehouse with the flexibility of
a data lake and open source Apache Spark. It also contains native support for log and telemetry
analytics using Azure Synapse Data Explorer pools and built-in data pipelines for data ingestion
and transformation.

• Azure Analysis Services is a fully managed PaaS. It delivers cloud-oriented enterprise-grade
data models. In Azure Analysis Services, we can use advanced mashup and modeling capabilities
in order to combine data from multiple data sources into a single trusted semantic tabular data
model, define metrics, and secure our data.

• Azure HDInsight is an enterprise-class, open source, managed full-spectrum analytics service
in the cloud. It is a cloud distribution of Hadoop components. With HDInsight, you can use
open source frameworks such as Apache Spark, Apache Hive, LLAP, Apache Kafka, and Hadoop
in your Azure environment.

• Microsoft Purview is an enterprise-wide data governance and discoverability solution, with
features such as the ability to create a map of data and track the data lineage across different
data sources and systems so you can find reliable data for reporting and analytics. In order
to enforce data governance across an organization, we can use Microsoft Purview. Microsoft
Purview ensures the integrity of the data used to support analytical workloads.

Getting started building with Power BI 141

Getting started building with Power BI
Microsoft Power BI is a collection of software services, applications, and connectors. They work
together to transform unrelated data sources into coherent information, in a visually immersive and,
above all, interactive way, facilitating the exploitation of the data afterward.

Data can be diverse – for example, a Microsoft Excel data workbook or a collection of cloud-based and
on-premises hybrid data warehouses. Power BI makes it easy to connect to these data sources, view
(or exploit) what is important, and share it according to permissions or for everyone by being public.

Power BI has a Microsoft Windows desktop application called Power BI Desktop, an online Software-
as-a-Service (SaaS) service called the Power BI service, but another mobile version is available on any
device using the native BI mobile application for Windows, iOS, and Android apps.

In the next section, we will see how to install and configure Power BI Desktop.

Power BI Desktop

To install Power BI Desktop, you can follow this link to download it from Windows Store: https://
aka.ms/pbidesktopstore. Or, you can download it using this link: https://go.microsoft.
com/fwlink/?LinkID=521662. You must manually update it periodically:

Figure 6.1 – Power BI Desktop interface

Before signing in to Power BI, you need to create an account. Go to this link and use your email address:
https://app.powerbi.com/. If you need more details related to the Power BI service, you can
follow this documentation link: https://learn.microsoft.com/power-bi/consumer/
end-user-sign-in.

https://aka.ms/pbidesktopstore
https://aka.ms/pbidesktopstore
https://go.microsoft.com/fwlink/?LinkID=521662
https://go.microsoft.com/fwlink/?LinkID=521662
https://app.powerbi.com/
https://learn.microsoft.com/power-bi/consumer/end-user-sign-in
https://learn.microsoft.com/power-bi/consumer/end-user-sign-in

Introduction to Application Data142

Summary
In this chapter, we discussed data classification and different data concepts. We explored relational
data and non-relational data concepts in Azure. We explored modern data warehouse analytics and,
at the end of the chapter, we learned about Power BI.

In the next chapter, we will learn how to provision and deploy Azure SQL Database and Azure SQL
Managed Instance. We are able to select from multiple options when performing a migration to the
SQL PaaS platform.

7
Working with

Azure SQL Database

In this chapter, we will learn how to provision and deploy Azure SQL Database and Azure SQL
Managed Instance. We will also learn how to choose an option from multiple options when performing
a migration to the SQL platform as a service (PaaS) platform. A web API will store data on Azure
SQL Database.

In this chapter, we’re going to cover the following main topics:

• Exploring PaaS options for deploying SQL Server in Azure

• Exercise 1 – deploying a single SQL database

• Exercise 2 – deploying Azure SQL Database elastic pools

• Exercise 3 – deploying SQL Managed Instance

• Exercise 4 – connecting Azure SQL Database to an ASP.NET app

Exploring PaaS options for deploying SQL Server in Azure
In this section, we will learn about the different PaaS options to deploy SQL Server in Azure. If we use
SQL Server as a relational database management system (RDBMS), we want to migrate our database
without having to make any conversions or thinking about reinstalling SQL Server and configuring it
again. Azure offers a PaaS that provides a complete development and also deployment environment
that is easy to use for cloud-oriented applications.

There are a couple of SQL Server options within Azure, such as SQL Server on Azure Virtual Machines
or SQL Managed Instances.

Working with Azure SQL Database144

Azure SQL Database

Azure SQL Database is a hosted SQL database service in Azure. It runs on the SQL Server database
engine. There are some important differences between Azure SQL Database and the traditional
SQL Service. But most database administrators using SQL Server are able to migrate to Azure SQL
Database. Azure SQL Database makes it extremely easy to scale a database. We are able to replicate a
database in one or more other locations around the world, which can improve performance if your
application is used worldwide.

Azure SQL Database is available not only as a PaaS but also as serverless. The difference between them
is that the PaaS option requires you to select a level of performance, and you will pay that fixed rate per
hour for access to the database. You can easily scale to a bigger or smaller performance plan without
causing disruption to your applications or your users by selecting the option within the Azure portal.
The serverless option allows you to pay only for usage. In fact, the database shuts down when you’re
not using it. This can be ideal for underused databases, such as if you have a developer-only tool that
needs a database to run but doesn’t need to run 24/7 and can be available immediately. Azure offers
99.99% reliability for Azure SQL Database and its default configuration.

Azure offers a high-level tier if you have a database that is an important resource for your business.
This is sometimes referred to as the premium tier in the database transaction unit (DTU) pricing
model. Business-critical SQL databases use a cluster of SQL database processes to respond to database
requests. Having multiple SQL engine processes makes your database more reliable because the failure
of one process doesn’t affect you directly.

Note that the Azure SLA doesn’t grow between Standard and Business Critical, although you can expect
higher availability in practice. But you can further increase your guaranteed uptime SLA by adding
zone-redundancy deployments. You can only do enterprise-critical zone redundancy deployments,
which brings you to 99.995% availability. Zone-redundant deployments involve deploying multiple
replicas of a database that are physically separated from each other in availability zones.

Let’s discover Azure SQL Managed Instance in the next section.

Azure SQL Managed Instance

We are able to move SQL Server to Azure using two different options. Infrastructure as a service (IaaS)
allows you to create an Azure SQL Server virtual machine and PaaS allows you to create a fully managed
Azure SQL database. There is another option that sits right in between these two and it’s called SQL
Managed Instance. SQL Managed Instance combines the benefits of both of the two alternatives (PaaS
and IaaS). Like a virtual machine, managed instances have almost 100% compatibility with on-premises
SQL Server. This includes SQL Server Agent support, access to a temporary database, cross-database
queries, distributed transactions, and common language runtimes. They are not available in a fully
managed Azure SQL database. A managed instance also supports up to 100 individual databases in
the same instance. But unlike virtual machines, managed instances also support automatic backup
scheduling, automatic remediation, and built-in high availability just like Azure SQL Database.

Exploring PaaS options for deploying SQL Server in Azure 145

Creating an Azure SQL Database instance

To create a new SQL database or SQL Managed Instance or only migrate to a SQL virtual machine,
we will create an Azure SQL instance that includes all these options. To do that, follow these steps:

1. Open the Azure portal and select Create a new resource.

2. Search for Azure SQL, then click on Create, as presented in the following figure:

Figure 7.1 – Azure SQL service

Or, use this link, https://portal.azure.com/#create/Microsoft.AzureSQL,
to display the Select SQL deployment option page, as presented in the following figure:

Figure 7.2 – Select SQL deployment option page

https://portal.azure.com/#create/Microsoft.AzureSQL

Working with Azure SQL Database146

Every service is available in two different deployment models. We can create a single database for all
services or we can select a different option. For example, for SQL database services, we can also select
Elastic pool or Database Server. For SQL Managed Instances, we have a single database in Azure
Arc, and in SQL virtual machines, we can select the SQL Server image to install it.

Let’s now discover how to create and deploy a single SQL database in the next section.

Exercise 1 – deploying a single SQL database
In a single database, each database is isolated; so, every database is billed and managed independently
in terms of scope, scale, and data size. We have two models; the first one is a DTU-based purchasing
model that provides a set of prices versus the performance packages to select for easy configuration,
and the second one is a vCore-based purchasing model that offers a wide range of configuration
controls and also provides Hyperscale and Serverless options to automatically scale your database
according to your needs and the required resources. In both models, each database has its own dedicated
resources with its own service tier, even if they are deployed on the same logical server. This is why it
is considered a deployment model for Azure SQL Database.

We will start by creating a SQL database. We’ll use the same page as shown in Figure 7.2 and leave
Resource type set to Single database. Then, click on the Create button. Let’s start with the Basics tab:

1. In Project details, select the subscription and the resource group (we can create a new one).
In the following figure, we can see the Project details part:

Figure 7.3 – Create SQL Database – Project details part

2. In Database details, we fill in the different required settings for a database. We need to select
an existing SQL database server but we can create it before completing the different settings
related to the database. In the following figure, we can see the Database details part:

Exercise 1 – deploying a single SQL database 147

Figure 7.4 – Create SQL Database – Database details part

3. If you don’t have a SQL database server, you will have to create a new server. Fill out the different
settings as follows:

A. Server name: This should be unique, not just within a subscription but across all Azure servers.

B. Location: Select a location from the drop-down list. In the following figure, we can see the
first part, which is related to the details of a new SQL database server:

Figure 7.5 – Create SQL Database Server – Server details

C. Authentication method: We have three options to select:

 � Use only Azure Active Directory (Azure AD) authentication

 � Use both SQL and Azure AD authentication

 � Use SQL authentication

 Select Use SQL authentication.

Working with Azure SQL Database148

D. Server admin login: This is the administrator login of the server.

E. Password: The password should meet the requirements, and we need to confirm the
password in another field. Click on Ok to complete the creation of the server.

Select OK to go back to the previous page.

In the following figure, we can see the Authentication part when we create a SQL database server:

Figure 7.6 – Create SQL Database Server – Authentication part

4. Select No for the question Want to use SQL elastic pool?.

5. For Workload environment, choose between Development and Production.

These options are shown in the following figure:

Figure 7.7 – Create SQL Database – disable SQL elastic pool and workload environment

6. Under Compute + storage, we need to select Configure database:

Figure 7.8 – Configure database

Exercise 1 – deploying a single SQL database 149

We will see the options shown in the following figure:

Figure 7.9 – Select service and compute tier

In this window, select the available tiers according to the needs of your workload. We can
leave Service tier as General Purpose or we can select another option, such as Hyperscale or
Business Critical, which are related to the vCore-based purchasing model, or Basic, Standard,
or Premium for a DTU-based purchasing model.

In Compute tier, select Serverless to ensure the auto-scaling of the compute resources and
that they are billed per second.

If we move to Compute Hardware, we can change the configuration of the hardware configuration.
By default, it is Gen5, but we have more options. We will leave the default configuration.

Next, update the maximum and minimum number of vCores. By default, we have 2 for the
maximum and 0.5 for the minimum, as presented in the following figure. We have more options
to update, such as Auto-pause delay, which can be used to pause a database automatically if
it is not active in a specific period.

Figure 7.10 – Maximum and minimum vCores configuration for compute hardware

At the end, we have to choose Yes or No for database zone redundancy. After that, click on Apply.

Working with Azure SQL Database150

7. Select the backup storage redundancy. We have three options. Select Locally-redundant
backup storage.

8. Move to the Networking tab. In this tab, configure the network access and connectivity for
the server. For Connectivity method, select Public endpoint. For Firewall rules, set Add
current client IP address to Yes. Leave Allow Azure services and resources to access this
server set to Yes to be able to connect to the database from our local machine, as presented
in the following figure:

Figure 7.11 – Configure network access in the Networking tab

9. Under Connection policy, we will leave the default connection policy, and we will leave the
Minimum TLS version at the default of TLS 1.2.

10. On the Security tab, you can choose to start a free trial of Microsoft Defender for SQL, as well
as configure Ledger, Managed identities, and transparent data encryption (TDE) if you want.

11. In Additional settings | Data source | Use existing data, select Sample to start testing the
service, Backup to select an existing backup, or None if you want an empty database to load
after configuration:

Exercise 1 – deploying a single SQL database 151

Figure 7.12 – Configure the Additional settings tab in Azure SQL Database

If we select Sample, this will create an AdventureWorksLT sample database so there are some
tables and data to query and experiment with. We can configure a database collection that
defines the different rules that will sort and compare the data.

12. Click, in the end, on Review + Create, and after reviewing, select Create.

Once the database is created, we will click on Go to resource.

In Overview, we have the different configurations set during creation.

Select Getting started to explore the different options to start working with the database. We can
configure the access to SQL Server, connect to the application using the connection strings, or start
developing using Azure Data Studio, where we can manage our data in the database:

Figure 7.13 – Getting started with Azure SQL Database

Working with Azure SQL Database152

We can test the database by using Query Editor. We already have a sample database. You can enter
any query in the Query Editor pane.

We can create a single database using the Azure CLI or PowerShell.

Sometimes, we need to manage multiple databases. In this case, we will use Azure SQL Database
elastic pools. We will see in the next section how we can deploy them in Azure.

Exercise 2 – deploying Azure SQL Database elastic pools
If we want to manage and scale multiple databases that have various and unpredictable usage
requirements, we will use Azure SQL Database elastic pools.

Pools are suitable for large numbers of databases with specific usage patterns. For a given database,
this pattern is characterized by infrequent usage peaks and low average usage. Otherwise, do not place
multiple databases under moderate sustained load in the same elastic pool.

Pools simplify management tasks by running scripts in elastic jobs. Elastic jobs eliminate most of the
tedious work associated with numerous databases.

Pooled databases generally support the same business continuity features available with single databases.

Azure SQL Database elastic pools are a simple and cost-effective solution. They are a deployment
option, which means we purchase Azure compute resources (eDTUs) and storage resources to be
shared between all the included databases. Why? Because the databases in an elastic pool reside on
a single server and share a fixed number of resources for a fixed price. Software as a service (SaaS)
developers can optimize the pricing performance of a group of databases within a well-defined budget
by benefiting from performance elasticity for each database, by using the elastic pools in Azure SQL
Database. In an elastic pool, we are able to add databases to the pool and set the maximum and
minimum resources (DTUs or vCore) for the databases according to our budget.

We will follow these steps to create a SQL database elastic pool:

1. Open the Azure portal, select Create a resource, and search for SQL Elastic database
pool. You will see the following screen:

Figure 7.14 – Create SQL elastic database pool

Exercise 2 – deploying Azure SQL Database elastic pools 153

2. In the Basics tab, fill in all the information needed to create a SQL elastic pool. Under Project
details, select the subscription and the resource group. Under Elastic pool details, we will
introduce the required settings for this pool, select a logical server, and then configure compute
and storage resources. We have the following screen to add the elastic pool name and server:

Figure 7.15 – Elastic pool details in a SQL elastic pool

3. In Compute + storage, we need to configure the elastic pool to select multiple databases. Click
on Configure elastic pool. We have the Pool settings tab, which includes different settings
such as the service tier, the compute hardware, and the number of vCores. We can enable elastic
pool zone redundancy. In the Databases tab, we will add the database. Click on Add databases.
Another window will be displayed, which will include all single databases. You can select one
or more databases to add to the elastic pool. They will share the same compute resources:

Figure 7.16 – Add databases to the elastic pool

4. Click on Apply, then select Review + create, then Create, and the elastic pool will be created.

5. Once created, select Go to resource, and in Overview, we can check the resource consumption
and identify which database is consuming the most resources. It is a monitoring tool that
helps us to run diagnostics on the performance issues of each database. We can also use the
Monitoring feature, under Database Resource Utilization, to display the performance of
every database within the pool.

Working with Azure SQL Database154

6. We can also configure our elastic pool by selecting Configure:

Figure 7.17 – Configure an elastic pool

7. If we need to update the elastic pool configuration by increasing or decreasing the allocated
resources, we can adjust the pool size, the service tier, or the resources of every database. We
can add or remove the databases inside the pool:

Figure 7.18 – Pool settings in an elastic pool

Exercise 3 – deploying SQL Managed Instance 155

If you have a large number of databases to migrate using a specific pattern, Azure SQL Database elastic
pools are the best solution. In the next section, we will deploy a SQL Managed Instance.

Exercise 3 – deploying SQL Managed Instance
If we go back to the SQL deployment page shown in Figure 7.2, we can now select SQL managed
instances. Leave Resource type as Single instance and click on Create:

Figure 7.19 – Create a SQL managed instance

In the Basics tab, we will introduce the information related to the project details, the managed instance
details, and authentication; it is similar to a SQL database.

In the Networking tab, we will configure the virtual network and public endpoint. You can leave the
default configuration; it depends on your internal configuration.

In the Security tab, we need to enable Microsoft Defender for SQL. We can configure system-assigned
and user-assigned managed identities to enable central access management between this database
and other Azure resources.

We have more tabs, such as Additional settings, which are used to customize additional configuration
parameters, including geo-replication, time zone, and collation.

Then, we click on the Review + create button.

Azure SQL Managed Instance is used for an easy lift and shift because it is compatible with on-premises
servers. It is a fully managed PaaS and easy to use and configure for modern databases.

Let’s explore how we can connect Azure SQL Database to an ASP.NET application.

Working with Azure SQL Database156

Exercise 4 – connecting Azure SQL Database to
an ASP.NET app
We will learn in this section how to connect an ASP.NET application to SQL Database.

The application is already using SQL Server 2019. We start by migrating the database to SQL Database
using the Data Migration Assistant migration tool (to download it, use this link: https://www.
microsoft.com/download/details.aspx?id=53595).

We will start by configuring the database connection, then we will update the connection string in ASP.
NET Core. The application is using Entity Framework to connect and manage Azure SQL Database.

Creating and configuring the database connection

We will follow these steps to create a database connection:

1. Open Visual Studio 2022 and use SQL Server Object Explorer, as presented in the following figure:

Figure 7.20 – SQL Server Object Explorer

2. At the top of SQL Server Object Explorer, right-click on SQL Server, then select Add SQL
Server, and a new dialog will be displayed, as presented in the following figure:

https://www.microsoft.com/download/details.aspx?id=53595
https://www.microsoft.com/download/details.aspx?id=53595

Exercise 4 – connecting Azure SQL Database to an ASP.NET app 157

Figure 7.21 – Connect dialog

We will follow these steps to configure the database connection:

1. In the Connect dialog, expand the Azure node. All Azure SQL Database instances will be listed.

2. We will select the database that we will use with our application.

3. The information related to the database will be filled in at the bottom, but we have to enter the
administrator password after we click on the Connect button.

4. The Create a new firewall rule dialog is displayed. To connect to your database from outside
Azure, you have to create a server-level firewall rule. A firewall rule allows the public IP address
of the local computer.

Working with Azure SQL Database158

In the following figure, we configure a firewall rule by allowing the internet IP to be able to
access the resource from Visual Studio:

Figure 7.22 – Allow public internet IP addresses in the Azure portal

5. When the firewall settings for Azure SQL Database have been configured, we will select the
database in SQL Server Object Explorer. Right-click on the server’s name and select Properties
and get the connection string from there. In the following figure, we have displayed the database
server in SQL Server Object Explorer:

Figure 7.23 – Display the database server in SQL Server Object Explorer

Summary 159

6. Go back to our application. Open the appsettings.json file and add the connection string:

Figure 7.24 – Connection string of the database in Visual Studio 2022

7. We can use the Database.Migrate() call to help us run the database in Azure SQL Database.

If you use a local database for development and Azure SQL Database for production, you need to
configure each environment in Program.cs.

Summary
In this chapter, we explored the different services to deploy SQL Server in Azure. We started by
deploying a single SQL database. We have multiple options, such as the serverless database option,
that permit us to create a low-cost database. Serverless is a compute tier for single databases in Azure
SQL Database that automatically scales compute based on workload demand and bills for the amount
of compute used per second. After we deployed the Azure SQL Database elastic pool, which includes
the serverless option, we deployed a SQL Managed Instance and, in the end, we connected an Azure
SQL database to an existing ASP.NET application.

In the next chapter, we will talk about the different storage options that are available in the Azure
Storage services, and the scenarios in which each storage option is appropriate.

Working with Azure SQL Database160

Further reading
If you want more information related to the Azure database service, you can check out these links:

• https://learn.microsoft.com/azure/azure-sql/database/
sql-database-paas-overview?view=azuresql

• https://learn.microsoft.com/azure/azure-sql/
database/?view=azuresql

Questions
1. What is Azure SQL Database?

2. How do we connect Azure SQL Database to an ASP.NET app?

https://learn.microsoft.com/azure/azure-sql/database/sql-database-paas-overview?view=azuresql
https://learn.microsoft.com/azure/azure-sql/database/sql-database-paas-overview?view=azuresql
https://learn.microsoft.com/azure/azure-sql/database/?view=azuresql
https://learn.microsoft.com/azure/azure-sql/database/?view=azuresql

8
Working with Azure Storage

Azure Storage is a Microsoft cloud storage solution for more than just data storage. Azure Storage
offers a scalable and secure object store for a variety of data objects, a filesystem service in the cloud,
a messaging store for relevant messaging, and an SQL store.

This chapter will cover the different storage options that are available in Azure Storage and the scenarios
in which each storage option is appropriate.

In this chapter, we’re going to cover the following main topics:

• Azure Storage account

• Exploring Azure Table storage

• Exploring Azure Blob Storage

• Exploring Azure Disk Storage

• Exploring Azure Files

Azure Storage account
In the healthcare solution, we have a platform for patient medical records. It includes unstructured
data such as documents, messages, notes, and images related to a patient, for example, diagnoses
documents, annual exams, and disease surveillance. All these documents are stored on a virtual
machine using a custom solution to extract or load the unstructured data.

Azure Storage is a service that can be used to store files, messages, tables, and other types of data. It’s
scalable, secure, and easy to manage and can be accessed from anywhere. Azure Storage is following
two cloud models: infrastructure as a service by using virtual machines and platform as a service by
using native cloud services. Azure Storage includes four data services, which can be accessed through
a storage account.

Each type supports different features and has a unique URL address to access. The data and your Azure
Storage account are always replicated to ensure durability and high availability.

Working with Azure Storage162

To create an Azure Storage account in Azure, the first step consists of using the Azure portal, PowerShell,
or the Azure Command-Line Interface (CLI).

If you’re using the Azure portal, select Create a resource, then Storage as the category, and then
Create under Storage account:

Figure 8.1 – Azure Storage account

In the Basics tab, we will introduce the project details. This part is the same for all Azure services. We
have the instance details, which include the storage account name and the location. For Performance,
we need to select Standard or Premium. The following screenshot shows the project details:

Azure Storage account 163

Figure 8.2 – Create a storage account – Project details in the Basics tab

In the following screenshot, you can see how we configure the instance details:

Figure 8.3 – Create a storage account – Instance details in the Basics tab

The data in the Azure storage account is always replicated to ensure durability and high availability. Select
a replication strategy that matches your durability requirements. Select from the list of four elements:

• Locally-redundant storage (LRS): This is the lowest-cost option. It includes basic features
and protection against server rack and drive failures. You can select this option if you have a
simple scenario, which is not critical or for testing.

• Geo-redundant storage (GRS): This is used in backup scenarios because it is an intermediate
option with a failover capability in another secondary region.

• Zone-redundant storage (ZRS): This is also an intermediate option, but it provides protection
against data center-level failures. It can be used for high-availability scenarios.

Working with Azure Storage164

• Geo-zone-redundant storage (GZRS): This is the best option for critical data scenarios because
it offers optimal data protection, including a combination of the features of GRS and ZRS.

In the following figure, you can see the options for configuring redundancy:

Figure 8.4 – Create a storage account – Redundancy configuration

Here, we have the classic deployment model, but if we need to create a legacy storage account type in
Instance details, we will click on here, as presented in the following figure:

Figure 8.5 – Select a legacy storage type

A new line will be added that is related to the storage account. If you need more details, you can
follow this link: https://docs.microsoft.com/azure/storage/common/storage-
account-create?tabs=azure-portal. This is used to choose an account type that matches
your storage needs and optimizes your costs.

A storage account contains all Azure Storage data objects, such as blobs, files, and disks.

In the next section, we will start exploring Azure Table Storage.

Exploring Azure Table Storage
Azure Table Storage provides support for storing structured data. It implements a NoSQL key-value
model, which means that it doesn’t have any concept of relationships, stored procedures, secondary
indexes, or foreign keys.

https://docs.microsoft.com/azure/storage/common/storage-account-create?tabs=azure-portal
https://docs.microsoft.com/azure/storage/common/storage-account-create?tabs=azure-portal

Exploring Azure Table Storage 165

Azure Table Storage is not the only service you can use to work with semi-structured data. So, why
use this service instead of other options? Let’s start by listing the benefits:

• Azure Table Storage can store petabytes of data at a low cost, which is really important when
it comes to building highly scalable applications where thousands or even millions of users
interact with them.

• Azure Table Storage also supports a flexible data schema, which is excellent for flexible datasets,
such as web applications, user data, device information, and metadata. The flexible data schema
allows you to modify application data models without having to stick to a particular schema.

• You can also quickly query data by using a clustered index. A clustered index defines the order
in which data is physically stored in a table and is great when it comes to performance. But
other than clustered indexes in Azure Table Storage, it’s possible to perform Open Data-based
queries (Odata-based queries), and by using these queries, you can define the query options
directly from the URL path.

• Working with Azure Table Storage is easy because you can either manipulate your data from
Azure Storage Explorer or directly from a .NET or .NET Core application by using the Azure
Tables client library for .NET. You can check it out at this link: https://github.com/
Azure/azure-sdk-for-net/blob/main/sdk/tables/Azure.Data.Tables/
README.md.

In the following diagram, we can see a key, which is unique and used to identify an item stored, and
a value, which is a set of fields:

Figure 8.6 – Key value in Azure Table Storage

How does it work inside Azure Table Storage? It splits the table into a set of partitions, which facilitates
rapid access to data. This mechanism groups the related rows that have a common property or partition
key. Rows sharing the same partition key will be stored in the same place.

https://github.com/Azure/azure-sdk-for-net/blob/main/sdk/tables/Azure.Data.Tables/README.md
https://github.com/Azure/azure-sdk-for-net/blob/main/sdk/tables/Azure.Data.Tables/README.md
https://github.com/Azure/azure-sdk-for-net/blob/main/sdk/tables/Azure.Data.Tables/README.md

Working with Azure Storage166

Inside these Azure Table Storage accounts, we can have tables. A table always represents either a
collection of rows or a single row. There is no requirement to define the schema for a specific table,
meaning you can store data with different properties within the same table. So, we said that inside
storage accounts, we have tables. Now, inside tables, we have rows, and a row is a set of data with a
single property or multiple properties. A row is similar to a database role in SQL databases.

A partition can be updated by adding or removing rows. A table includes any number of partitions.

The key in an Azure Table Storage table contains two elements: the key and the row key. The key is
considered identified, and the row key is unique in the same partition.

Let’s create a new Azure Table Storage table.

Creating a table in Azure Table Storage in the Azure portal

We have created an Azure Storage account before. It’s time to learn how to create an Azure table.

Azure tables are used to store rows where we store the data. We will learn two different ways of
creating Azure tables:

• The first one is manually using the Azure portal

• The second way is by using the ASP.NET Core application

To create an Azure Storage table, follow these steps:

1. Open your Azure Storage account and select Storage browser, and then click on Tables, as
presented in the following screenshot:

Figure 8.7 – Azure Storage account – Tables

Exploring Azure Table Storage 167

2. Click on Add table. A dialog window will be displayed and we will add the table name:

Figure 8.8 – Add table in an Azure Storage account

3. Now, we will select the table we created and add a new row, which in the Azure portal is called
an entity. Click on Add entity:

Figure 8.9 – Add entity in an Azure Storage table

4. A new dialog window will be displayed to add PartitionKey and RowKey. We can also click
on Add property to add a different property if needed:

 � The PartitionKey property contains a string value that identifies the partition to which
the entity belongs. Partitions are a vital part of table scalability. Entities with the same
PartitionKey value are stored in the same partition.

 � The RowKey property stores a string value that uniquely identifies the entity within each
partition. PartitionKey and RowKey form the entity’s primary key.

Working with Azure Storage168

5. Then, click on the Insert button:

Figure 8.10 – Add PartitionKey, RowKey, and properties

Check whether a new entity has been created after clicking Insert. The entity should contain
the specified values, including a timestamp that contains the date and time that the entity
was created:

Exploring Azure Blob Storage 169

Figure 8.11 – Display an entity in an Azure Storage table

We can create this structure with different elements in our Azure Storage account:

Figure 8.12 – Azure Table Storage components

We created an Azure Storage account in Azure. We added a new table, which is a collection of entities
(rows). For every table, we can create a new entity that includes a set of properties. We added a partition
key and a row key. We can also add a property that is presented as a name-value pair. We covered the
different components of Azure Table Storage, so now we will move on to exploring Azure Blob Storage.

Exploring Azure Blob Storage
Azure Blob Storage provides massively scalable storage for unstructured data. Unstructured data is
any data that isn’t stored in the structured database format. This can be anything: binary, text files,
images, or videos. Microsoft Azure Virtual Machines store the disk images in Blob Storage.

Blob is an acronym for binary large object.

Working with Azure Storage170

Azure currently supports three different types of blobs:

• Block blobs: A block blob is managed as a set of blocks. The size of each block varies up to 100
MB. A block blob can contain up to 50,000 blocks. The maximum size is over 4.7 TB. A block
is the smallest amount of data that can be read or written as a unit. Block blobs are great for
storing separate large binary objects that rarely change.

• Page blobs: A page blob is organized as a collection of fixed-size 512-byte pages. A page blob
is optimized to support random read and write operations; you can fetch and store data for
a single page if necessary. A page blob can hold up to 8 TB of data. Azure uses page blobs to
implement virtual disk storage for virtual machines.

• Append blobs: Append blobs are like block blobs but more optimized to support a new feature,
that is, to append operations. You can only add blocks to the end of an append blob. Updating
or deleting existing blocks is not supported. Each block can be of various sizes up to 4 MB. The
maximum size of an append blob is slightly over 195 GB.

Blobs are stored in containers, which allows you to organize your blobs depending on your business needs.

This diagram presents the structure of Azure Blob Storage and how we can use an Azure account
with containers and blobs:

Figure 8.13 – Storage account – containers and blobs

Now, let’s configure Blob Storage. We will use the same Azure Storage account:

1. Create a new container. Go to Storage browser, select Blob containers, and then click on
Add container:

Exploring Azure Blob Storage 171

Figure 8.14 – Azure Storage account – Blob containers

2. Now, you can provide a name for your container and then select the public access level. You
can select Private, Blob, or Container:

Figure 8.15 – Add a new container in Azure Blob Storage

3. You can add encryption if you select Public access level in the Advanced section. After that,
click on the Create button.

Working with Azure Storage172

A container is now created. When we select a container, we can manipulate it. We will open the
container we just created and upload some files by selecting the Upload button. Select your file or files:

Figure 8.16 – Upload files in a container

To customize the file or files you upload, you can click Advanced and then select the authentication
type, blob type, blob size, tier, and folder. We’re going to leave the defaults. Once the file or files have
been uploaded, you can then change the specific settings for that file.

You could view or edit the file, download it, see the properties, generate the shared access signature,
view the snapshots, create snapshots, and change the tier if you wanted to do so. If you require a lock
on the blob for read and write operations, then you can lease the blob by selecting Acquire lease. You
can also easily delete the file from here:

Exploring Azure Blob Storage 173

Figure 8.17 – Uploaded file settings

Let’s go back and look at some of the other options that can be used with Blob Storage. You can map
a custom domain name to your storage account. To do so, create the Canonical Name (CNAME)
with your favorite registrar, then register the name with Azure and add it.

There are two options for doing this:

• The first option consists of setting up a custom domain.

• The second option consists of using a subdomain. There’ll be no downtime when your storage
account moves over to the custom domain name.

We talked about soft delete when we created the storage account, but we can also configure it at the
blob level. You do so by selecting Data protection. Here, you can enable soft delete and then specify
the number of days that the blob will be retained if it is deleted. To utilize the Azure content delivery
network (CDN), you create a new CDN profile under Azure CDN. However, this is beyond the scope
of this chapter.

Another feature of Azure Storage is the ability to use Azure Cognitive Search to index documents.
You would set up this feature in Azure Search, just like CDN.

Finally, we have Lifecycle management. It’s here that we can manage data based on rules.

Working with Azure Storage174

On the Azure Blob Storage account home page, select Lifecycle management under Data management,
and you’ll see the screen shown in the following screenshot, where you select Add a rule:

Figure 8.18 – Add a rule for Lifecycle management in an Azure Storage account

In the following figure, we illustrate life cycle management in an Azure Storage account:

Figure 8.19 – Azure Blob Storage life cycle management

Exploring Azure Blob Storage 175

For example, we could create a rule that would move blobs to another access tier based on the number
of days since they were last modified. We’re going to come up with a rule name of RuleTest, as
shown in the following screenshot:

Figure 8.20 – Add a rule in an Azure Storage account

Working with Azure Storage176

In the Base blobs tab, select the first option and move the blob to cool storage after, let’s say, 60 days
since it was last modified:

Figure 8.21 – Add a rule in an Azure Storage account – the Base blobs tab

We select Add conditions to enable moving data to archive storage after it hasn’t been modified for
a certain amount of time. Let’s update it to 90 days and then delete it. In the following figure, we
present the different rules added:

Exploring Azure Blob Storage 177

Figure 8.22 – Add new condition in Azure Storage account – the Base blobs tab

We have the option to create a filter set, which will limit the rules to certain objects. Finally, we select
Review and Add. Now, that blob will be moved automatically through that life cycle based on the
number of days since it was modified.

Azure Blob Storage client library for .NET

Blob storage is optimized to store a massive amount of unstructured data, and in this section, we will
use a client library for .NET: Azure Blob Storage.

Follow these steps to install the package and work out example code for basic tasks:

1. Create a .NET console app using Visual Studio 2022 or the .NET CLI.

2. In order to interact with Azure Blob Storage, we need to install the Azure Blob Storage client
library for .NET using NuGet Package Manager or Package Manager Console, as presented in
the following screenshot:

Working with Azure Storage178

Figure 8.23 – Azure Blob Storage .NET library

3. In Program.cs, we will use the BlobServiceClient constructor using the
account’s connection string. To create a unique name for the container, we will use the
CreateBlobContainerAsync method:

var blobServiceClient = new BlobServiceClient("<your-
storage-account-connection-string>");

BlobContainerClient containerClient = await
blobServiceClient.CreateBlobContainerAsync(containerName);

4. We will create a local directory for uploading and downloading files. We will write text in a file
and get a reference to a blob using the GetBlobClient method:

string localPath = "datarepo";

Directory.CreateDirectory(localPath);

string fileName = "file-" + Guid.NewGuid().ToString() +
".txt";

string localFilePath = Path.Combine(localPath, fileName);

BlobClient blobClient = containerClient.
GetBlobClient(fileName);

5. We will upload data from the local file using the UploadAsync method:

await blobClient.UploadAsync(localFilePath, true);

Exploring Azure Disk Storage 179

6. To list all blobs in the container, we will use the GetBlobsAsync method:

await foreach (BlobItem blobItem in containerClient.
GetBlobsAsync())

{

 Console.WriteLine(«\t» + blobItem.Name);

}

7. To download the blob’s contents and save it to a file, we will use the DownloadToAsync method:

await blobClient.DownloadToAsync(downloadFilePath);

8. If we need to delete the bloc container, we call the containerClient and the DeleteAsync
method, and if we want to delete the local source and downloaded file, we call the Delete
method for every file:

await containerClient.DeleteAsync();

File.Delete(localFilePath);

File.Delete(downloadFilePath);

If you need more details about this library, you can follow this link, https://github.com/
Azure/azure-sdk-for-net/tree/main/sdk/storage/Azure.Storage.Blobs/
samples, which includes the different samples to be tested for Azure Blob Storage.

We’ve discussed Azure Blob Storage, and in the next section, we’ll move on to the basic concepts of
Azure Disk Storage.

Exploring Azure Disk Storage
Azure Disk Storage provides managed storage for virtual machine disks. But applications and services
are allowed to use these disks as needed. In Disk Storage, data is persistently stored and accessed from
an attached virtual hard disk.

We have different disk sizes and performance levels, from solid-state drives (SSDs) to traditional
hard disk drives (HDDs).

Azure Managed Disks uses redundancy to achieve availability. The user is allowed to create up to
50,000 virtual machine disks within a region. Consider your capacity and performance requirements
when using Azure Managed Disks. The cost depends on the type of storage hardware and the size of
the virtual disk.

We’ve defined Azure Disk Storage, so now we’ll move on to Azure Files in the next section.

https://github.com/Azure/azure-sdk-for-net/tree/main/sdk/storage/Azure.Storage.Blobs/samples
https://github.com/Azure/azure-sdk-for-net/tree/main/sdk/storage/Azure.Storage.Blobs/samples
https://github.com/Azure/azure-sdk-for-net/tree/main/sdk/storage/Azure.Storage.Blobs/samples

Working with Azure Storage180

Exploring Azure Files
Azure Files storage provides cloud-based file shares, which can be accessed from the cloud or on-premises.

Azure Files storage offers shared storage for applications using the industry-standard Server Message
Block (SMB) protocol and the Network File System (NFS) protocol. Azure Virtual Machines and cloud
services can share file data across application components via mounted shares. On-premises applications
can also access file data under sharing repositories. That means multiple virtual machines can share
the same files with both read and write access. You can also read the files using the REpresentational
State Transfer (REST) API interface or the storage client libraries. Applications running in Azure
Virtual Machines, Windows, Linux, or other cloud services can mount a file storage share to access file
data, just as an application would mount a typical SMB or NFS share. Any number of Azure Virtual
Machines or roles can mount and access the file storage share simultaneously. Azure Files SMB file
shares are accessible from Windows, Linux, and macOS clients. NFS file shares are accessible from
Linux and macOS clients.

The common uses of file storage

Azure Files can be used to completely replace traditional on-premises file servers or Network Attached
Storage (NAS) devices. Popular operating systems, such as Windows, macOS, and Linux, can directly
mount Azure file shares wherever they are in any location. Azure Files makes it easy to lift and shift
applications to the cloud that expect a file share to store file applications or user data. Azure file shares
can also be replicated with Azure File Sync to Windows servers, either on-premises or on the cloud.
To ensure performance and distributed caching of data where it is used, shared application settings are
stored, for example, in configuration files, and diagnostic data such as logs, metrics, and crash dumps
to a shared location. We store the tools and utilities needed to develop or administer Azure virtual
machines or cloud services. That has covered all the common use cases of file storage for Azure Files.

Adding Azure Files in the Azure portal

Now, we will see how we add Azure Files in the Azure portal:

1. Go back to Storage browser and select File shares:

Exploring Azure Files 181

Figure 8.24 – Storage browser | File shares

2. Select Add file share and add a name. Select Tier, then Transaction optimized or Hot or Cool:

 � Transaction optimized is used to enable transaction-heavy workloads. We use it for
applications requiring file storage as a backend store.

 � Hot is the optimized option for some file-sharing scenarios; for example, if a team is sharing
files, Azure Files will synchronize them.

 � Cool is used for archive storage scenarios.

Working with Azure Storage182

Once created, we can explore the different settings, as presented in the following screenshot:

Figure 8.25 – Azure Files settings

3. If we select Connect, we can configure the connection to the Azure file share from Windows,
Linux, or macOS. To secure the connection, select Active Directory or Storage account key
for Windows. We can change Tier from Transaction optimized to Cold, for example, or from
Cold to Hot.

Sometimes, it’s not easy to decide when to use Azure file shares instead of blobs or disk shares in your
solution. If we compare the different features, we can decide which solution is suitable. If we compare
Azure Files to Azure Blob side by side, we see that Azure Files provides an SMB and NFS interface,
client libraries, and the REST interface, which allows access from anywhere to store files. Azure Blob
provides client libraries and the REST interface, which allows unstructured data with flat namespaces
to be stored and accessed at a massive scale in the blobs.

Exploring Azure Files 183

When to use Azure files versus blobs

You can use Azure files to lift and shift an application to the cloud, which already uses the native
filesystem APIs to share data between it and other applications running in Azure. You want to store
development and debugging tools that need to be accessed from many virtual machines. Azure blobs,
on the other hand, can be used if you want your application to support streaming and random-access
scenarios and you want to be able to access application data from anywhere. There are a few other
distinguishing features on when to select Azure files over Azure blobs. Azure files are true directory
objects, while Azure blobs are a flat namespace. Azure files can be accessed through file shares. However,
Azure blobs are accessed through a container. Azure files provide shared access across multiple virtual
machines, while Azure disks are exclusive to a single virtual machine.

When you select which storage feature to use, you should also consider pricing and perform a
cost-benefit analysis.

Azure Storage is accessible via a REST API or designed for Microsoft Azure Virtual Machines, as
illustrated in the following diagram:

Figure 8.26 – Azure Storage

The Microsoft Azure Storage services REST API provides programmatic access to blob, queue, table,
and file services in your Azure or development environment through a storage emulator. You can see
more details about these APIs at this link: https://learn.microsoft.com/rest/api/
storageservices/.

https://learn.microsoft.com/rest/api/storageservices/
https://learn.microsoft.com/rest/api/storageservices/

Working with Azure Storage184

Summary
In this chapter, we presented the different storage options that are available in Azure Storage services.
We started by creating an Azure Storage account, which includes different types of storage. We explored
Azure Table Storage, Azure Blob Storage, Azure Disk Storage, and, in the end, Azure Files.

In the next chapter, we will cover designing and implementing cloud-native applications using
Microsoft Azure Cosmos DB.

Further reading
For more information, you can check out the Microsoft documentation at this link: https://learn.
microsoft.com/azure/storage/. If you need to follow a example using Azure Storage with
.NET library, use this link: https://learn.microsoft.com/azure/storage/common/
storage-samples-dotnet.

Questions
1. What are the common uses of file storage?

2. When do you use Azure files versus blobs?

https://learn.microsoft.com/azure/storage/
https://learn.microsoft.com/azure/storage/
https://learn.microsoft.com/azure/storage/common/storage-samples-dotnet
https://learn.microsoft.com/azure/storage/common/storage-samples-dotnet

9
Working with Azure Cosmos DB

to Manage Database Services

We store data in relational tables if we are using relational databases. Unstructured data can be
stored in a storage solution, but sometimes, the structure of a relational database can be too rigid
and generally leads to poor performance in certain cases, requiring the implementation of specific
and detailed tuning. There are several models, known as NoSQL databases, that present solutions for
certain scenarios, such as documents, graphs, column family stores, and key-value stores.

NoSQL databases are defined by multiple characteristics: they are non-relational, have a JavaScript
Object Notation (JSON) schema, and are designed for scaling out.

This chapter will cover designing and implementing cloud-native applications using a multi-model
NoSQL database management system, which is Microsoft Azure Cosmos DB.

In this chapter, we’re going to cover the following main topics:

• NoSQL databases

• Exercise 1 – creating an Azure Cosmos DB account using the Azure portal

• Exploring the Azure Cosmos DB SQL API

• Exercise 2 – creating an Azure Cosmos DB SQL API account

• Exercise 3 – connecting to the Azure Cosmos DB SQL API with the SDK

NoSQL databases
Organizations now handle more than structured data. NoSQL databases store unstructured data in
documents rather than relational tables, where we store structured data. So, we categorize them as
“more than just SQL” and decompose them into various flexible data models. NoSQL database types
include document-only databases, key-value stores, wide-column databases, and chart databases.

Working with Azure Cosmos DB to Manage Database Services186

NoSQL databases are built from the ground up to store and process vast amounts of data at scale,
supporting the ever-growing modern business.

The following are definitions for the most popular types of NoSQL databases:

• Key-value store: A key-value store groups related data into collections so that records can be
identified by unique keys for easy retrieval. A key-value store retains the benefits of a NoSQL
database structure, yet has enough structure to reflect the values of relational databases (as
opposed to non-relational databases). We can see an example in the following figure:

Figure 9.1 – Key-value NoSQL database type

Microsoft Azure Table Storage is an example of this type of NoSQL database.

• Document: Document-only databases are primarily created to store document-centric data as
documents, such as JSON documents. These systems can also be used to store XML documents
such as NoSQL databases. Azure Cosmos DB is an example of this type.

• Table style: This type is a data model based on sparsely populated tables. They are also called
wide-column databases. They use the tabular format of relational databases, but the naming
and formatting of the data in each row can vary greatly, even in the same table. Similar to
key-value stores, wide-column databases have a basic NoSQL structure while retaining a high
degree of flexibility.

• Graph: The graph type is a record generally stored in key-data format. We use it to define the
relationships between stored data points. Graph databases allow us to identify the patterns in
unstructured and semi-structured information. In the following figure, we can see the different
graph components:

Exercise 1 – creating an Azure Cosmos DB account using the Azure portal 187

Figure 9.2 – Graph NoSQL database type

Polyglot persistence across multiple non-relational (NoSQL) data stores can add significant complexity
and overhead. As a result, Microsoft provides a multi-model, geographically distributed database
called Azure Cosmos DB with data structures for natively storing key-value pairs, JSON hierarchies,
and graphs.

Azure Cosmos DB is a fully managed PaaS offering and its internal storage is abstracted from the
different users.

Exercise 1 – creating an Azure Cosmos DB account using
the Azure portal
Azure Cosmos DB is a distributed database engine with a core set of features no matter how you
use your database. These features include the ability to elastically distribute databases, the ability to
scale both storage and throughput bi-directionally, low latency with financially backed SLAs, various
consistency options, and enterprise-class security features.

Azure Cosmos DB is designed for high responsiveness and always-on availability for most modern
applications in the cloud. Cosmos DB is considered a NoSQL database and works primarily with four
data models (key-value, documents, column-family or table-style, and graph).

Azure Cosmos DB includes documents stored where data is schemeless and most likely stored as
JSON documents. Many document databases use JSON to represent the document structure, graph-
oriented models where data is represented as diagrammatic structures such as nodes and edges, and
key-value stores in their simplest form. A database management system stores only key-value pairs
and has a wide column store that can store data with many dynamic columns. Cosmos DB’s focus on
high availability, geographic distribution, and speed provides some pretty cool advantages.

Working with Azure Cosmos DB to Manage Database Services188

Cosmos DB manages data as a partitioned set of documents. A document is made up of a set of fields,
and each field is identified by a key. The fields in each document may vary and a field may contain
child documents. In a Cosmos DB database, the documents are organized into containers that are
grouped into partitions.

A document can contain up to 2 MB of data, including small binary objects. But if you need to store
larger blobs related to a document, you’ll need to use Azure Blob Storage. You can then add a reference
to the blob created in the document.

Let’s start by creating an Azure Cosmos DB resource by using the Azure portal. We will follow these steps:

1. On the home page of the Azure portal, select Create a resource. You can use the search input
and enter Cosmos or you can select the Databases category. Select Create under Azure
Cosmos DB:

Figure 9.3 – Azure Cosmos DB | Create

Exercise 1 – creating an Azure Cosmos DB account using the Azure portal 189

2. On the Select API option page, we have to select an API to create a new account. Note that
we are not able to change it after account creation:

Figure 9.4 – The Select API option page in Cosmos DB

We have these APIs to choose from:

 � Core (SQL) is recommended for new applications. It is a native API used for documents.
It’s Azure Cosmos DB’s core.

 � Azure Cosmos DB API for MongoDB is a native SQL API with APIs for MongoDB.
MongoDB is a document database. This API is recommended if you already have an existing
MongoDB workload and you would like to migrate it to Azure, for example.

 � Cassandra is a fully managed database service dedicated to Apache Cassandra apps. If you
already have an existing Cassandra workload, you can use this API to migrate it to Azure.
Cassandra is a distributed NoSQL database management system used for large data.

 � Azure Table is also a fully managed database service for Azure Table Storage apps. If we decide
to migrate an existing Azure Table Storage resource to Cosmos DB, we can use this API.

 � Gremlin (Graph) is Apache TinkerPop’s graph traversal language. Gremlin is a functional
dataflow language that allows users to concisely express complex traversals (or queries) of
an application’s property graph. Cosmos DB is a fully managed graph database service that
uses Gremlin. If we would like to add new workloads that need to store relationships between
data, this option is recommended.

Working with Azure Cosmos DB to Manage Database Services190

3. Select any API option. We will have the same options on the Create Azure Cosmos DB Account
- Core (SQL) page. Start with the Basics tab:

Figure 9.5 – Project Details on the Basics tab

On the Basics tab, we have the project details, which include common general information
related to any Azure services, such as Subscription and selecting a resource group. Then,
we can add the information needed for the instance details, such as the Cosmos DB account
name, the location, and the capacity mode for your database operations. We have two different
capacity modes to choose from:

 � Provisioned throughput: You can configure the amount of throughput you expect the database
to deliver, but you are required to plan the best performance level for the application’s needs.
This mode is expressed in request units per second (RU/s). There are two types: standard
(manual) and autoscale. An Azure Cosmos DB SQL API database is a schema-agnostic set
of container management units. Each container is a scalable unit of throughput and storage.
Throughput can be provisioned at the database level, container level, or both. Throughput
provisioned to a database is shared by all containers within the database. All containers share
throughput resources, so we may not get predictable performance for certain containers in
our database:

Exercise 1 – creating an Azure Cosmos DB account using the Azure portal 191

Figure 9.6 – Azure Cosmos DB components

 � Serverless: We select this option to create an account in serverless mode, which means that
we can run our database operations in containers without the need to configure previously
provisioned capacity. It is a consumption-based model where each request consumes request
units. The consumption model eliminates the need to pre-provision throughput request units:

Important note
When we are working with Azure Cosmos DB, we typically express database options in terms
of cost expressed in RU/s.

Figure 9.7 – Instance Details on the Basics tab

Working with Azure Cosmos DB to Manage Database Services192

4. We will select whether we want to apply the Azure Cosmos DB free tier discount. We will get
the first 1,000 RU/s and 25 GB of storage for free after creating this account.

We can only create one free tier Azure Cosmos DB account per Azure subscription. If we are
already using it, this option will not be displayed when we create a new Cosmos DB account.

5. It is recommended to select Limit the total amount of throughput that can be provisioned
on this account to prevent any unexpected charges related to provisioned throughput.

6. In the Global Distribution tab, we can enable geo-redundancy and multi-region writes:

A. Geo-redundancy is the ability to add more regions to your account

B. The Georedundancy writes capability allows you to use your provisioned throughput for
databases and containers around the world

7. On the Networking tab, select a connectivity method to connect the Cosmos DB account to a
public endpoint via public IP addresses, a private endpoint, or to all networks.

8. We also have the Backup Policy tab, Encryption tab, and Tags tab. You can update them
according to your needs or keep their defaults as they are.

9. After selecting Create, select Review + create.

Once the deployment has been completed, you can check the Azure Cosmos DB account page and
start exploring the different elements to use it.

With that, we have created an Azure Cosmos DB account by using the Azure portal. Azure Cosmos
DB includes multiple APIs. In the next section, we will start exploring the Cosmos DB SQL API.

Exploring the Cosmos DB SQL API
Azure Cosmos DB supports multiple APIs models, which makes it possible for you to select the ideal
API for your application. In this section, we will specifically drill down into this SQL API. The Cosmos
DB SQL API is the default Azure Cosmos DB API. You can store data using JSON documents to
represent your data. Even though we are using the SQL API, we will still get to take advantage of all
of the core features of Cosmos DB that are universal across all APIs.

The Core API for Cosmos DB is recommended when you’re building new solutions. This API uses
SQL as a query language, along with JavaScript as its programming language. Both of these languages
are pretty universal and popular, making it more likely that you already have experience with both.

Talking about the SQL query language specifically, you can write queries against Cosmos DB using
the same SQL syntax you would use with products such as Microsoft SQL Server. Even though you
are using the SQL query language, you can use these queries with your JSON documents, so you don’t
have to do anything special to make your queries work with JSON. You can embed JSON objects
directly into your queries. If you take a look at some unusual scenarios, you need to shape your JSON
documents and test specific schema for the query result.

Exercise 2 – creating an Azure Cosmos DB SQL API account 193

JavaScript is the language used by Cosmos DB for server-side programming. Storage procedures,
triggers, and user functions are all written using JavaScript. Since JavaScript can natively process JSON
objects, you’ll find that JavaScript is ideal for manipulating properties and documents throughout
your server-side code.

Exercise 2 – creating an Azure Cosmos DB SQL API account
We will create an Azure Cosmos DB account by following the same steps in the first exercise, but we
will select the Core (SQL) API option.

We will start by adding a new database and a container. After, we will add data to the created database.
We will query the data and, in the end, use the SDK of Cosmos DB to connect to the Azure Cosmos
DB SQL API while using C# as the programming language.

Adding a new database and a new container

Let’s look at the steps:

1. Select Data Explorer to create a new container, then select New container:

Figure 9.8 – Data Explorer option in the Azure Cosmos DB account

Working with Azure Cosmos DB to Manage Database Services194

We need to fill in all the information needed:

 � Database id is the name of the database; we can add any unique name or we can use an
existing one.

 � Check Share throughput across containers. This allows you to distribute your database’s
provisioned throughput across all containers in your database. We are using this option to
save costs.

 � Regarding Database throughput (400 - unlimited RU/s), we can select Autoscale or Manual.
We will leave the throughput at 400 required RU/s:

Figure 9.9 – Creating a new container – step 1

2. The second step is related to the container and the partition key. We will add the
following information:

Exercise 2 – creating an Azure Cosmos DB SQL API account 195

Figure 9.10 – Creating a new container – step 2

The container ID is the name of your container, and the partition key is used to automatically
distribute data across partitions to ensure scalability.

Working with Azure Cosmos DB to Manage Database Services196

3. Click on OK to confirm the creation of a new container. Once one has been created, Data
Explorer will display it and the new database:

Figure 9.11 – New database and new container in Data Explorer

Now, we’ll add data to our database. To do that, we will use JSON content; we will see how in the
next section.

Adding data to a database

We will select Items under appointments and use the following structure to add data to the document:

{

 "id": "1",

 "appointment": "appointment with a dentist",

 "patientname": "Hamida Rebai",

 "doctorname": "Rayen Trabelsi",

Exercise 2 – creating an Azure Cosmos DB SQL API account 197

 "isConfirmed": false,

 "date": "2023-03-09T22:18:26.625Z"

}

On the right of the Documents pane, add the JSON content and click on Save. You can add more
than one item by clicking on New Item:

Figure 9.12 – Adding data to your database using JSON content

Note that we don’t have a schema for the data added in Azure Cosmos DB.

We have added data to our database using JSON content. We are now able to query the data.

Querying data

We will use queries in Data Explorer to search for and filter data according to a specific criterion.

We will select New SQL Query at the top. We can add a default selection that will display all the data
in our database:

SELECT * FROM c

Working with Azure Cosmos DB to Manage Database Services198

In the next figure, we will select New SQL Query to add the SQL command and to execute it, we
select Execute Query:

Figure 9.13 – Querying data from documents in Cosmos DB

We can add more filters to retrieve data. For example, if we need to order the result, we can use this query:

SELECT * FROM c ORDER BY c.id DESC

Exercise 2 – creating an Azure Cosmos DB SQL API account 199

Figure 9.14 – Filtering data by order – DESC

You can use any SQL queries to search and retrieve data. You can also add stored procedures and triggers.

Data Explorer is an easy-to-use tool in the Azure portal that is used to add queries in SQL. We observe
the results in JSON format, and we can measure the impact in terms of RU/s using the Query Stats tab.

Working with Azure Cosmos DB to Manage Database Services200

We can generate metrics in a CSV file:

Figure 9.15 – Query Stats in Data Explorer

In this section, we created a new Azure Cosmos DB container. We used the SQL API, and we added a
new database and a new container. We added data to the database to test Data Explorer and retrieved
the data using the SQL language.

In the next section, we will learn about the SDK, which we will use to connect to the Azure Cosmos
DB SQL API using C# as the programming language.

Exercise 3 – connecting to the Azure Cosmos DB SQL API
with the SDK
In this section, we will explore Microsoft .NET SDL v3 for Azure Cosmos DB and explore the different
methods and classes used to create different resources.

It is really simple to add the .NET SDK to your solution. Once we add the SDK to the project using
NuGet by adding the Microsoft.Azure.Cosmos package, we will create a CosmosClient. We
need an endpoint and a master key for a Cosmos DB account, which we will retrieve and add to the
CosmosClient constructor. Now that the CosmosClient class has been configured, we simply
call methods on it to do whatever we need. We can create databases and containers, query documents,
and run stored procedures, which means that we can do all operations that we can do in Data Explorer.

Exercise 3 – connecting to the Azure Cosmos DB SQL API with the SDK 201

But how does it work? The SDK figures out how to set up the HTTP headers, make the REST call, and
parse the response back from Cosmos DB. There is great flexibility in the types of objects we can use to
represent our documents. These can be typical C# classes or Plain Old CLR Object (POCOs) or plain
old Common Language Runtime (CLR) objects, or we can use dynamic types with no predefined
properties, which fits with the flexible schema that we have in a document database. Most operations
performed will be asynchronous, where the code doesn’t get blocked while waiting for a response
from Cosmos DB after making a request. That’s where the Task Parallel Library in .NET comes in.

Important note
If you prefer using Language-Integrated Query (LINQ) rather than SQL, the SDK also includes
a LINQ provider that can translate LINQ queries that you write in C# into Cosmos DB SQL
for execution.

Let’s start by creating a new console application using .NET Core 6. This will be a simple demo that
just runs a query and displays some results:

1. Grab the SDK from NuGet, search for Microsoft.Azure.Cosmos, and install it. Add
the NuGet Microsoft.Extensions.Configuration.Json package so that we can use a JSON
configuration file to store our Cosmos DB connection information:

Figure 9.16 – Adding Microsoft.Azure.Cosmos

2. We will introduce the code snippet that will add the endpoint URI and the primary key. We will
replace the information related to the endpoint URI and the primary key in Program.cs:

private static readonly string EndpointUri = "Add your
endpoint here";

Working with Azure Cosmos DB to Manage Database Services202

private static readonly string PrimaryKey = "add your
primary key>";

This information can be found in Keys under Settings in the Azure Cosmos DB account. This
is an example:

Figure 9.17 – Getting the primary URI and primary key from Keys under Settings

3. If we want to create a new database and a new container, we can use this code snippet:

private CosmosClient cosmosClient;

private Database database;

private Container container;

private string databaseId = "appointmentDB";

private string containerId = "appointmentContainer";

// Runs the CreateDatabaseAsync method

 await this.CreateDatabaseAsync();

 // Run the CreateContainerAsync method

 await this.CreateContainerAsync();

private async Task CreateDatabaseAsync()

Exercise 3 – connecting to the Azure Cosmos DB SQL API with the SDK 203

{

 // Create a new database using the cosmosClient

 this.database = await this.cosmosClient.
CreateDatabaseIfNotExistsAsync(databaseId);

 }

private async Task CreateContainerAsync()

{

 // Create a new container

 this.container = await this.database.
CreateContainerIfNotExistsAsync(containerId, "/
LastName");

}

We can add a new JSON file that will include the different settings. We will optimize our code to
perform a query in the documents. So, we will create a new JSON file similar to the one shown in
the following figure:

Figure 9.18 – App settings in a JSON file

The Program class will be similar to this:

using Microsoft.Azure.Cosmos;

using Microsoft.Extensions.Configuration;

var config = new ConfigurationBuilder().
AddJsonFile("appsettings.json").Build();

var endpointuri = config["EndpointURI"];

var primarykey = config["PrimaryKey"];

using (var client = new CosmosClient(endpointuri, primarykey))
{

 var container = client.GetContainer("HealthcareContainer",
"appointments");

 var mysqlquery = "SELECT * FROM c";

Working with Azure Cosmos DB to Manage Database Services204

 var iterator = container.GetItemQueryIterator<dynamic
>(mysqlquery);

 var page = await iterator.ReadNextAsync();

 foreach (var item in page)

 {

 Console.WriteLine(item);

 }

}

We will debug the solution to display the different items. You can display the information that you
need inside foreach:

Figure 9.19 – Getting items using CosmosClient and a SELECT query

If we want to use LINQ instead of a SQL query, it is simple: you need to add a class that will include your
object. In our case, I added the Appointment class; we will replace the code with the following code:

using (var client = new CosmosClient(endpointuri, primarykey))
{

 var container = client.GetContainer("HealthcareContainer",
"appointments");

 var q = from d in container.GetItemLinqQueryable
<Appointment>(allowSynchronousQueryExecution:true)

 select d;

 var documents = q.ToList();

 foreach(var document in documents)

Exercise 3 – connecting Azure App Service with Azure Cosmos DB 205

 {

 var d = document as dynamic;

 Console.WriteLine(d);

 }

}

Azure Cosmos DB also provides language-integrated transactional execution of JavaScript, which
allows you to write stored procedures or triggers, user-defined functions, and much more.

Azure Cosmos DB is a distributed database system designed for low latency, elastic throughput
scalability, well-defined semantics for data consistency, and high availability. It enables data reading
and data writing from a local replica of your database. Azure Cosmos DB replicates data across all
regions associated with your Azure Cosmos DB account.

If we build an application that requires a fast response time anywhere in different regions, with unlimited
elastic scalability of throughput and storage and high availability, we will use Azure Cosmos DB.

You have to configure your databases to be globally distributed and available in any Azure region
to achieve high availability with Azure Cosmos DB. Azure Cosmos DB is a managed multi-tenant
service. It manages all details of individual compute nodes transparently. So, users don’t have to worry
about patching and planned maintenance. We also have replica outages, which refer to a single node
failure in an Azure Cosmos DB cluster deployed in an Azure region. Azure Cosmos DB automatically
mitigates replica failures by guaranteeing at least three replicas of your data in each Azure region of
your account within a quorum of four replicas.

In the next section, we will connect an application’s ASP.NET Core Web API deployed on Azure App
Service with Azure Cosmos DB as a database.

Exercise 3 – connecting Azure App Service with Azure
Cosmos DB
In this section, we will connect Azure App Service with Azure Cosmos DB as a database. An ASP.
NET Web API will connect to a Cosmos DB database to manage the appointments booked by patients
before sending them to the doctor’s dashboard.

Working with Azure Cosmos DB to Manage Database Services206

We will use Visual Studio 2022 with the Azure workload installed. We will follow these steps to connect
to Azure Cosmos DB using Connected Services:

1. In Solution Explorer, right-click the Connected Services node, and, from the context menu,
select Add Connected Service:

Figure 9.20 – Connected Services

2. In Connected Services, select Add a service dependency or the + icon for Service Dependencies.

3. On the Add dependency page, select Azure Cosmos DB:

Exercise 3 – connecting Azure App Service with Azure Cosmos DB 207

Figure 9.21 – Add dependency – Azure Cosmos DB

4. Select Next. On the Connect to Azure Cosmos DB page, select an existing database, and select
Next. We can create a new Azure Cosmos DB instance by selecting + Create new:

Figure 9.22 – Connect to Azure Cosmos DB

Working with Azure Cosmos DB to Manage Database Services208

5. Enter a connection string name, and select a connection string stored in a local secrets file or
Azure Key Vault:

Figure 9.23 – Configuring a connection string for Azure Cosmos DB

6. The Summary of changes screen displays all the modifications that will be made to the
project to complete the process. If the changes look fine, select Finish to start the dependency
configuration process:

Figure 9.24 – Summary of changes in Visual Studio 2022

Exercise 3 – connecting Azure App Service with Azure Cosmos DB 209

The result will be similar to what’s shown in the following figure, where all service dependencies
have a Connected status:

Figure 9.25 – Service Dependencies on the Connected Services tab

The application is deployed on Azure App Service and the database used is Cosmos DB, as presented
in the following figure:

Figure 9.26 – Hosting and Service Dependencies

We can use the Microsoft.Azure.Cosmos packages and the CosmosClient class here. However, if
you use Entity Framework as an object-relational mapper in the data layer, you can use the Microsoft.
EntityFrameworkCore.Cosmos package. For more details, you can follow this link: https://
learn.microsoft.com/ef/core/providers/cosmos/?tabs=dotnet-core-cli.

https://learn.microsoft.com/ef/core/providers/cosmos/?tabs=dotnet-core-cli
https://learn.microsoft.com/ef/core/providers/cosmos/?tabs=dotnet-core-cli

Working with Azure Cosmos DB to Manage Database Services210

Summary
In this chapter, we learned how to create an Azure Cosmos DB account, and we created a database
and container using Data Explorer. We explored the different API models, such as Core (SQL), which
is recommended for new applications, the Azure Cosmos DB API for MongoDB, Cassandra, Azure
Table Storage, and Gremlin (Graph). We created resources by using the Microsoft .NET SDK v3. We
connected the application to an Azure Cosmos DB account using the endpoint and the primary key.
We used CosmosClient to create a database, create a container, and retrieve data from a document.
We also connected Azure App Service with Azure Cosmos DB.

In the next chapter, we will explore big data storage. We will define Azure Data Lake Storage and
learn how to create a more secure, high-performance framework for data analytics. If you need more
information related to Cosmos DB, you can check out this link: https://learn.microsoft.
com/azure/cosmos-db/introduction.

Questions
Before creating a container, which Azure Cosmos DB SQL API resource should you create first?

https://learn.microsoft.com/azure/cosmos-db/introduction
https://learn.microsoft.com/azure/cosmos-db/introduction

10
Big Data Storage Overview

Companies that use modern systems generate large volumes of heterogeneous data. This data must be
exploited for marketing reasons or to make internal improvements to a product. This heterogeneous
data demonstrates that a single data store is generally not the best approach.

It is also recommended to store different types of data in different data stores so that each one is
geared toward a specific workload or usage pattern. If we use a combination of different data storage
technologies, we are using what is called polyglot persistence. It is important to understand what
Azure offers as a service for storing data warehouses and how we can use and analyze all that data.

In this chapter, we will explore big data storage and define Azure Data Lake Storage scalability,
security, and cost optimization work. You will learn how to create a more secure, high-performance
framework for data analytics.

In this chapter, we’re going to cover the following main topics:

• Exploring Azure Data Lake Storage

• Exploring Azure Data Factory

• Exploring Azure Databricks

• Exploring Azure Synapse Analytics

• Exploring Azure Analysis Services

Exploring Azure Data Lake Storage
Azure Storage includes five Azure services:

• Azure Blob Storage, which is scalable storage for unstructured data

• Azure Queue Storage, which allows us to build a reliable queue of messages

• Azure Table Storage, which provides support for storing structured data

• Azure Files Storage, which is used for cloud-based file shares

• Azure Disks Storage, which provides managed storage for virtual machines disks

Big Data Storage Overview212

A data lake is a form of file storage, typically on a distributed filesystem for high-performance data
access. The technologies that are commonly used to process queries against stored files and return
data for reporting and analysis are Spark and Hadoop. These systems rely on a read-schema approach,
which defines a tabular schema for semi-structured data files, where the data is parsed as it is read and
no restrictions are applied when it is saved. Data lakes are ideal for supporting a mix of structured,
semi-structured, and unstructured data that you want to analyze to avoid applying schemas when
the data is written to storage.

Azure Data Lake Gen2 technology is created on top of Azure Blob Storage and supports most Blob
Storage features. More benefits are related to Azure Data Lake, such as supporting the hierarchical
namespaces, which means that we can store data in a file-like structure. This benefit improves
the performance of the directory-managed operations to provide better support for a large-scale
analytical engine.

In this section, we will start by exploring Azure Data Lake Storage. Azure Data Lake Storage combines
the power of a high-performance filesystem with a large-scale storage platform to give you quick
insights into your data.

Azure Data Lake Storage Gen2 builds on Azure Blob Storage features to optimize it, especially for
analytical workloads. If you’ve used Hadoop Distributed File System, we can treat the data in the
same way. With this feature, you can store your data in one place and access it through various Azure
compute services, such as Azure Databricks, HDInsight, and SQL Data Warehouse. Data Lake Storage
Gen2 supports ACLs and POSIX permissions. We can set a granular level of permissions at the
directory or file level for data stored within the data lake. Azure Data Lake Storage organizes stored
data by following a hierarchy of directories and subdirectories, such as a filesystem for easy navigation,
which improves the performance of each directory-managed operation. This organization allows us
to provide better support for a large-scale analytical engine, improved querying performance using
data partitioning, and better file and data management.

The cost of storing data in Azure Data Lake Storage is the same as storing data in Azure Blob Storage.
There is a slight increase in transaction costs for data access, but in many cases, these cost increases
must be balanced against the need for fewer transactions due to more efficient queries. Overall, Azure
Data Lake Storage allows you to build secure, enterprise-scale data lakes. It offers many of the benefits
of Azure Blob Storage while doing so at minimal additional cost.

A good use case for Blob storage is archiving infrequently used data or storing website assets such
as images and media. Azure Data Lake Storage Gen2 plays a fundamental role in any Azure data
architecture. These architectures include building modern data warehouses, advanced analytics on
big data, and real-time analytics solutions.

Exploring Azure Data Lake Storage 213

Common to all architectures, there are four phases of processing big data solutions:

1. The ingestion phase identifies the technologies and processes used to ingest the source data.
This data can come from files, logs, and other types of unstructured data that need to be placed
in Data Lake Storage.

2. The storage phase identifies where to store the recorded data. In this case, we use Azure Data
Lake Storage Gen2. This phase is presented in the following figure:

Figure 10.1 – Ingestion phase – Azure Data Lake Storage Gen2

3. The preparation and training phase identifies the technologies used to conduct, prepare, and
model the training and subsequent scoring of the data science solution. Common technologies
used in this phase are Azure Databricks, Azure HDInsight, and Azure Machine Learning.

4. Finally, the model and deployment phase includes the technology that presents data to users. This
includes visualization tools such as Power BI and data stores such as Azure Synapse Analytics,
Azure Cosmos DB, Azure SQL Database, and Azure Analysis Services. Combinations of these
technologies are often used, depending on business needs.

Common file formats for general-purpose storage in Azure Data Lake include Excel, XML, JSON,
binary, Avro, delimited, Optimized Row Columnar (ORC), and Parquet.

We will create a new Azure Data Lake solution using the Azure portal and the Azure CLI in the
following subsections.

Big Data Storage Overview214

Creating an Azure Data Lake instance using the Azure portal

Azure Data Lake Storage is built on top of Azure Storage; so, we will create a new storage account and
enter the different information needed in the Basics tab.

In the Advanced tab, check Enable hierarchical namespace under Data Lake Storage Gen2. This
setting will convert the standard Blob storage account into an Azure Data Lake storage account:

Figure 10.2 – Creating an Azure Data Lake instance using the Azure portal

Select Review + Create to review your storage account settings and create the account.

To enable Data Lake Storage capabilities on an existing account, open your storage account; then,
under Settings, select Data Lake Gen2 upgrade. The Upgrade to a storage account with Azure Data
Lake Gen2 capabilities page will be displayed, which includes three steps. The first step consists of
reviewing the account changes before the launch of the upgrade and the second step will validate the
different features that cannot be supported with Azure Data Lake Storage Gen2. We will get a list of
discrepancies. The last step starts the upgrade once the validation succeeds:

Exploring Azure Data Lake Storage 215

Figure 10.3 – Upgrading to a storage account with Azure Data Lake Gen2 capabilities

After a successful migration, we will get the following message: This account has successfully been
upgraded to an account with Azure Data Lake Gen2.

In the next section, we will create an Azure Data Lake instance using the Azure CLI.

Creating an Azure Data Lake instance using the Azure CLI

We will run the Azure Cloud Shell browser tool to execute the following steps:

1. Create a new resource group to deploy our Azure Data Lake Storage into, and add the name
and the location:

$ az group create --name healthcareRG --location eastus

Big Data Storage Overview216

In the following figure, we will execute the previous command line to create a new resource group:

Figure 10.4 – The result of adding a new resource group

2. Create a managed identity:

$ az identity create -g healthcareRG -n user1

The output is shown in the following screenshot:

Figure 10.5 – The result of creating a managed identity

3. Create a new storage area with Data Lake Storage Gen2, but before that, add an extension to
the Azure CLI so that it can use the different features for Data Lake Storage Gen2:

$ az extension add --name storage-preview

$ az storage account create --name myhealthcarestorage1 \

 --resource-group healthcareRG \

 --location eastus --sku Standard_LRS \

 --kind StorageV2 --hns true

Exploring Azure Data Factory 217

Once our deployment has finished, and we have the JSON output, we can go back to the portal and
go to our resource groups. We will see that our new resource group has been created. Inside it, we
have the Data Lake Storage account and the new user:

Figure 10.6 – Displaying a Data Lake Storage Gen2 resource

We can add the new user-assigned managed identity to the Storage Blob Data Contributor role on
the storage account.

If we want to upgrade Azure Blob Storage with Azure Data Lake Storage Gen2 capabilities using the
Azure CLI, we can run the following command:

$ az storage account hns-migration start --type validation -n
your-storage-account-name -g the-resource-group-name

In Azure, you can implement data ingestion at scale by creating pipelines that orchestrate the process
of extracting, transforming, and loading data. This process is called ETL. A lot of work based on
coordinating all of the sources, destinations, and transformations, as well as multiple databases, file
formats, and data types, is often required, and this is the task of Azure Data Factory (ADF). You can
use ADF to build and run pipelines. We will explore this service in the next section.

Exploring Azure Data Factory
ADF is an Azure cloud-based data integration service, a Platform-as-a-Service (PaaS) solution that
allows you to orchestrate and automate data movement and data transformation. Data integration is
the process of combining data from multiple sources and providing an integrated view of it.

Big Data Storage Overview218

ADF allows you to define and schedule data pipelines so that you can transfer and transform data.
You can integrate your pipelines with other Azure services, making it easy for you to integrate data
from cloud data stores. You can also process data using cloud-based compute resources and keep the
results in another data store.

ADF is serverless, which means that you only pay for what you use.

With ADF, we can bring data into a common format. We can generate new insights we’d probably
never have by keeping this data separately.

ADF is enterprise data ready because it has almost 90 different data connectors where we don’t need
to use a server. It is also a code-free transformation capability because we have mapping data flows,
which provide a different transformation type that allows us to modify data. With ADF, we can run
code on any Azure compute instance for any hands-on data transformations. It includes multiple SQL
Server Integration Services (SSIS) packages that we can run on Azure, which optimize the ability
to rehost on-premises databases in ADF. ADF uses Azure DevOps and GitHub to manage the data
pipeline operations. We can use built-in multiple activities to simplify data publication to any data
warehouse, database, or BI analytics engine. ADF simplifies data pipeline operations by allowing
the automated provisioning of simple templates. It provides secure data integration because it uses a
virtual network manager to prevent data exfiltration.

ADF components

We need to understand the key terms and basic concepts in ADF. There are six main components,
which we will cover in this section, that we have to create our projects: pipelines, activities, datasets,
linked services, data flows, and integration runtimes. Then, we will explore control flows, pipeline
runs, triggers, parameters, and variables:

• Pipelines are logical groups of activities that perform a single unit of work. We can have more
than one active pipeline. A group of activities in a pipeline performs a task. An activity can be
scheduled in a sequence (run as a chain) or independently (run in parallel) within a pipeline.
With pipelines, we can manage correlated activities in a single entity.

• Activities are processing steps inside a pipeline, as defined previously. Three types of activities
are supported: data movement, so we can copy data from a store (source) to another store,
which is the destination, data transformation, and activity orchestration.

• Datasets are data structures that give us a selected view into a data store, ideally to point to or
reference the data used as inputs and outputs of a particular activity.

• Linked services are the connection strings that activities can use to connect to external services,
which means that they are the connection information needed by ADF to connect to external
resources, typically pointing to data sources (ingestion) or compute resources (transformation)
required for execution.

Exploring Azure Data Factory 219

• Mapping data flows create and manage data transformation logic graphs, which can be used to
transform data of any size. We can build up a reusable library of data transformation routines
to execute those scalable processes from our pipelines.

• Integration runtime is the compute infrastructure used by ADF. It provides fully managed data
flows for the transformation and data movement processes, an activity dispatcher to route the
service, and a manager that computes SSIS package execution tasks within the data pipelines.

The following are additional terminologies related to ADF:

• Pipeline runs or pipeline execution: We instantiate pipelines by passing arguments (values)
to parameters (placeholders) that are defined by the activity pipeline. These arguments can be
passed manually or using a trigger.

• Trigger: This is a unit of processing that determines when pipeline execution begins. We have
different trigger types to use for different events.

• Parameters: These are key-value pairs of configuration that are used in read-only mode. They
are populated from the runtime execution and defined in the pipeline. Dataset and linked
services are strongly typed, referenceable, and reusable parameter entities.

• Variables: These are used within pipelines to store temporary values. States are used with
parameters to pass values between activities, data flows, and pipelines.

• Control flow: This is the process of orchestrating the pipeline activities. It contains the chaining
activities, defines parameters, branch activities, and custom state passing, and passes arguments
for the pipeline running on demand or invoked by a trigger.

Now, we will create an ADF using the Azure portal.

Creating an ADF using the Azure portal

Open the Azure portal and select Create a resource. Then, follow these steps to create an ADF:

1. Select Integration and then click on Create under Data Factory.

2. On the Basics tab on the Create Data Factory page, the first part is related to the project details,
so we will select the subscription and the resource group. Regarding the instance details, we
will enter the name of our ADF instance, which must be unique, and the region where our
ADF metadata will be stored. The version will be V2:

Big Data Storage Overview220

Figure 10.7 – Create Data Factory – the Basics tab

3. Configure a Git repository in Azure DevOps or GitHub. We can Configure Git later:

Figure 10.8 – Create Data Factory – the Git configuration tab

Exploring Azure Data Factory 221

4. Leave the default value as-is for the Networking tab. We can configure a private or public
endpoint and choose whether or not to enable a managed virtual network. Under Advanced,
we can enable encryption using a customer manager key to secure our ADF instance further.

5. Select Review + create, and then select Create after the validation has passed.

Once the ADF resource has been created, we must navigate to the ADF page and start exploring the
different settings. Select Open Azure Data Factory Studio; a new page will be loaded in a separate
tab in your browser:

Figure 10.9 – Opening ADF Studio in the ADF service

To start with ADF, we will create a linked service, datasets, and pipeline.

Creating a linked service

We need to follow these steps:

1. To create a linked service to link a data store to our ADF instance, we can select any external
store or Azure Storage, or a database, file, or NoSQL database. Select the Manage tab from the
left pane and after that, select + New:

Big Data Storage Overview222

Figure 10.10 – Creating linked services

2. Select Azure Data Lake Storage Gen2 and then select Continue.

3. Fill out the name, information related to the subscription, and the name of the storage account
that we will use to store the data:

Figure 10.11 – Selecting the Azure Storage account to store data

Exploring Azure Data Factory 223

4. Select Test connect to confirm that our ADF instance is connected to the storage account (Data
Lake Storage Gen2). Then, select Create to save the linked service.

Creating a dataset

In this section, we will create two datasets: the first will be the input and the second will be the output.
They will be of the Azure Data Lake Storage Gen2 type:

1. Select the Author icon on the left of the pane. Next, click on the plus icon (+) and select Dataset:

Figure 10.12 – Create a dataset

2. On the New Dataset page, select Azure Data Lake Storage Gen2. Then, select Continue.

3. Choose the format type of your data from Avro, Binary, DelimitedText, Excel, JSON, ORC,
Parquet, or XML. To copy our files without parsing their content, we will select the Binary type.

4. Set the different properties on the Set properties page, namely, the name and the linked service.
We will use the Data Lake Storage that we configured previously. Select a file path:

Big Data Storage Overview224

Figure 10.13 – The Set properties page of a dataset for the input

5. Create another dataset following the same steps as before, but specify this as an output. Select
OK to confirm this:

Figure 10.14 – The Set properties page of a dataset for the output

After creating the dataset, we will create our pipeline with a copy activity using the input and output
datasets. This copy activity will copy our data from the input dataset file to the output dataset file settings.

Creating a pipeline

To create a pipeline, we will follow these steps:

1. Again, select the plus (+) button, then Pipeline | Pipeline, as presented in the following figure:

Exploring Azure Data Factory 225

Figure 10.15 – Selecting a pipeline

Alternatively, we can select Pipelines and then New pipeline, as shown in the following figure,
to create a new pipeline:

Figure 10.16 – Creating a pipeline

Big Data Storage Overview226

2. Name our pipeline CopyPipeline.

3. In the Activities toolbox, expand Move & transform. Next, drag the Copy data activity to
the pipeline designer surface on the right. We will rename it CopyFromDFToDF, as follows:

Figure 10.17 – Move & transform under Activities

4. Switch to the Source tab under the copy activity setting and select our input dataset (InputDS)
for Source dataset. Then, switch to the Sink tab to link the output dataset (OutputDS).

Exploring Azure Data Factory 227

In the following figure, you can see the input dataset configured in the activity settings:

Figure 10.18 – Configuring the input dataset in the activity settings

Big Data Storage Overview228

In the following figure, you can see the output dataset configured in the activity settings:

Figure 10.19 – Configuring the output dataset in the activity settings

5. Select Validate on the pipeline toolbar to validate all the different settings we created previously.
Once the pipeline has been validated without any errors, we will proceed with debugging our
pipeline. So, select the Debug button. We will not publish any changes to the service in this
phase. We will check the result in the Output tab of the pipeline settings.

Exploring Azure Databricks 229

6. We can trigger our pipeline manually. To do so, we need to publish the entities to ADF. So,
select publish at the top. After that, select Add Trigger on the pipeline toolbar and then select
Trigger Now.

7. We can automate our trigger on a schedule. In the Author tab, select Add Trigger on the
pipeline toolbar. Next, select New/Edit. Select Choose Trigger on the Add Triggers page. After
that, click on New. We will set up our trigger on the New Trigger page. After completing this
configuration, we need to Publish all to apply the changes to ADF.

In this section, we used the Azure portal to create ADF, though we can also use the Azure CLI, Azure
PowerShell, REST APIs, or a .NET application. You can read more about these options in the Microsoft
documentation: https://docs.microsoft.com/azure/data-factory/.

A Data Factory is primarily a data orchestration and movement tool that calls other services such as
Databricks to transform data. We will learn more about Azure Databricks in the next section.

Exploring Azure Databricks
In this section, we will explore the different features of Azure Databricks. However, we will start by
defining Azure Synapse Analytics.

Azure Synapse Analytics

Databricks is a data, analytics, and AI company. This is a link to their platform: https://www.
databricks.com/. They were the first creators of the open source versions of Apache Spark, Delta
Lake, and MLflow. They used some of the architectural components of these services to compose
Databricks. They tried to unify the innovation of the process within data science and data engineering.

Databricks offers an interactive workspace, helping to automate the production workflow. This entire
workspace is fully managed, and Azure is the channel that Databricks uses to deliver a solution that
can be deployed, regardless of the underlying infrastructure, such as servers and virtual machines.

Azure Databricks features

Azure Databricks offers multiples features:

• Exploiting the Spark engine, providing features such as machine learning, SQL, DataFrames,
low-latency streaming APIs, as well as graph APIs to help find relationships in a dataset

• Several languages, such as Scala, Python, Java, R, and SQL, can be used in Azure Databricks

https://docs.microsoft.com/azure/data-factory/

Big Data Storage Overview230

• Seamless and automatic integration of a workspace and Azure Active Directory

• Easy connection with ADF to create data pipelines

• Connecting the Databricks workspace to your Azure Storage so that you can use it as a filesystem
where you can upload files to use in the workspace

• Adherence to industry security standards and compliance, such as FedRAMP and PCI DSS

We will explore the different components of Azure Databricks next.

Azure Databricks components

When we create a new Azure Databricks resource, we must create a new Databricks workspace. This
is the first component; a workspace is an interactive tool used for exploring and visualizing data. In
the workspace, we have Apache Spark clusters. They are used to serve as a compute engine to run
the workloads in Azure Databricks. We can share clusters among users in a workspace. A cluster is
auto-scalable, which means that we can allocate resources based on the component of the running
job. We can auto-terminate any inactive cluster after a specific period of inactivity. We also have
notebooks. These are part of the workspace, allowing us to read, write, query, visualize, or explore a
dataset. We can connect a notebook to a cluster to run items. We have more options in notebooks,
such as saving, sharing, importing, and exporting them in the workspace. Now, we will create a new
Databricks workspace using the Azure portal.

Creating an Azure Databricks workspace

In this section, to set up our Azure Databricks environment, we will create an Azure Databricks cluster
and notebooks, and walk through how to use them.

Open the Azure portal; we will start by clicking the Create a resource button. Then, in the search box,
type in Azure Databricks. We will click on the Create button to create our resource. Follow
these steps:

1. On the creation page, we must go through the various steps. We will start with the Basics tab.
The first part is common to all resources: filling in the information for the subscription and
the resource group. Regarding the instance details, we will introduce the workspace name and
select the region and pricing tier. Under Pricing Tier, we have three options:

 � Standard, where we can use Apache Spark and integrate Azure Active Directory

 � Premium, where we have another feature that involves the use of role-based access controls

 � Trial, which allows us to use the Premium option for free for 14 days

Exploring Azure Databricks 231

2. On the Networking and Advanced tabs, we can use the default values. Select Review + Create.
Once the validation has passed, click on the Create button.

3. Once the resource has been created, we will explore the Azure Databricks service page. Select
Launch Workspace:

Figure 10.20 – Launching an Azure Databricks workspace

We will be redirected to another page in the browser.

4. On the landing page of the Databricks workspace, we will be asked to select the reason for using
Databricks. We will select Building data pipelines (ETL, streaming).

Big Data Storage Overview232

5. Create a new cluster that will act as the compute engine for any of the code we will write. Click
on Create a cluster, and then select the Create a cluster button:

Figure 10.21 – Creating a cluster in a Databricks workspace

6. Let’s fill out the different options with some simple configurations, as seen in the following
screenshot, and select Create Cluster to confirm them:

Exploring Azure Databricks 233

Figure 10.22 – Configuring a new cluster

7. Create a new notebook. We will select Create in the left pane, then Notebook, and then type
a name.

Big Data Storage Overview234

8. The next option is to select the language you want to code in. We’ll select the cluster, which is
the cluster that we created before. Go ahead and press Create to create the notebook:

Figure 10.23 – Creating a notebook

We can use Python to bring data into the Databricks environment. We will use this code to pull
data from the CSV file saved in a GitHub repository (https://raw.githubusercontent.
com/didourebai/developerGuideForCloudApps/main/data.csv) into our
Databricks environment:

import pandas as pd ## this import is used for data analysis

casesdatacsv = pd.read_csv('https://raw.githubusercontent.com/
didourebai/developerGuideForCloudApps/main/data.csv');

print ("First Databricks Table")

display(casesdatacsv)

The first line of this code is required. We call pandas, which is a Python package used for data analysis.
The next line will grab a CSV file that contains some data from the GitHub repository. What it’s going
to do is save this as a DataFrame. We will call the DataFrame casesdatacsv. If we want to add a
header to the result, we can use print with a message. Then, we can click on Run Cell or use Shift
+ Enter. The result is as follows:

https://raw.githubusercontent.com/didourebai/developerGuideForCloudApps/main/data.csv
https://raw.githubusercontent.com/didourebai/developerGuideForCloudApps/main/data.csv

Exploring Azure Synapse Analytics 235

Figure 10.24 – Result of pushing data into a Databricks environment

We can expand the result if we have many rows in the displayed table.

Azure includes more solutions for data analytics. In the next section, we will explore Azure
Synapse Analytics.

Exploring Azure Synapse Analytics
Azure Synapse Analytics is an integrated end-to-end solution for data analytics at scale. It includes
multiple technologies and capabilities to combine the data integrity and reliability of a scalable, high-
performance SQL Server-based relational data warehouse with the flexibility of a data lake and open
source Apache Spark. It also contains native support for log and telemetry analytics through the use of
Azure Synapse Data Explorer pools and built-in data pipelines for data ingestion and transformation.

All Azure Synapse Analytics services can be managed from a single interactive user interface called
Azure Synapse Studio. It allows you to create interactive notebooks that can combine Spark code and
Markdown content. Synapse Analytics is ideal for building a single, unified analytics solution on Azure.

Exploring Azure Analysis Services
Azure Analysis Services is a fully managed PaaS. It delivers cloud-oriented, enterprise-grade data
models. In Azure Analysis Services, we can use advanced features of mashup and modeling to combine
our data from more data sources into a single trusted tabular semantic data model. We can also define
metrics and secure our data.

Big Data Storage Overview236

Summary
In this chapter, we covered various Azure data services that we can use. We used ADF and its data
flows to record data. Ingested data can be stored in raw format in Azure Data Lake Storage Gen2.
This raw data can be processed using various services, such as Azure Databricks, Azure HDInsight,
and dedicated SQL pools. Managing individual services can be difficult. That’s where Azure Synapse
Analytics comes in. There are well-integrated services that work across all layers of a modern data
warehouse, all from one environment.

In the next chapter, we will cover the continuous integration/continuous deployment (CI/CD) of
containers on Azure. We will set up CD to produce our container images and orchestration.

Further reading
If you need more information related to big data storage in Azure, go to https://learn.
microsoft.com/azure/architecture/data-guide/technology-choices/
data-storage and https://learn.microsoft.com/azure/storage/common/
storage-introduction.

Questions
Answer the following questions to test your knowledge of this chapter:

1. What is the difference between Azure Databricks and ADF?

2. How do we create an ADF instance using the Azure portal?

https://learn.microsoft.com/azure/architecture/data-guide/technology-choices/data-storage
https://learn.microsoft.com/azure/architecture/data-guide/technology-choices/data-storage
https://learn.microsoft.com/azure/architecture/data-guide/technology-choices/data-storage
https://learn.microsoft.com/azure/storage/common/storage-introduction
https://learn.microsoft.com/azure/storage/common/storage-introduction

Part 3:
Ensuring Continuous

Integration and Continuous
Container Deployment on Azure

In this part of the book, we will focus on the continuous integration and continuous deployment of
containerized applications to deploy to Azure containers and orchestrator cloud services.

This part comprises the following chapter:

• Chapter 11, Containers and Continuous Deployment on Azure

11
Containers and Continuous

Deployment on Azure

Containers are a simple way for developers to build, test, deploy, update, and redeploy applications to
a variety of environments, from a developer’s local machine to an on-premises data center, and even
to the cloud across multiple vendors.

Azure offers multiple services to deploy containers. Containers make it easy to continuously build
and deploy your apps. With Kubernetes orchestration in Azure using Azure Kubernetes Service, our
clusters of containers are replicable and easy to manage.

In this chapter, we will cover the continuous integration and continuous delivery (CI/CD) of containers
on Azure. We will set up continuous deployment to produce our container images and orchestration.

In this chapter, we’re going to cover the following main topics:

• Setting up continuous deployment for Docker with Azure DevOps and Azure Container Registry

• Continuous deployment for Windows containers with Azure DevOps

• Integrating Docker Hub with the CI/CD pipeline

Setting up continuous deployment for Docker with Azure
DevOps and Azure Container Registry
In this section, we will set up a CI pipeline for building containerized applications. We will build and
publish Docker images to Azure Container Registry using Azure DevOps to increase the reliability
and speed of the deployment.

Containers and Continuous Deployment on Azure240

We will use our solution in GitHub. You can fork or clone it from this repository: https://github.
com/didourebai/healthcaresolution.git. We will deploy our previous healthcare
solution, which includes an ASP.NET API and two applications using ASP.NET MVC, and follow the
steps illustrated in the following figure to deploy the application to Azure Container Registry. We will
use Azure DevOps to ensure CI/CD:

Figure 11.1 – Scenario: Build and push a Docker image to Azure

Container Registry using Azure DevOps pipelines

Note that we can use Azure Repos instead of a GitHub repository. A Container Registry resource is
already created.

Creating the pipeline

In this section, we will create a pipeline as we need an Azure DevOps organization and a project
already created. To do this, follow these steps:

1. Sign in to your Azure DevOps organization and navigate to your project: healthcaresolution.

2. Select Pipelines then Pipelines, select Create Pipeline, then select New pipeline, which will
be displayed at the bottom, to create a new pipeline, as presented in the following figure:

https://github.com/didourebai/healthcaresolution
https://github.com/didourebai/healthcaresolution

Setting up continuous deployment for Docker with Azure DevOps and Azure Container Registry 241

Figure 11.2 – Create pipeline

3. Connect to our remote repository that is in GitHub. We can select our code from any remote
repository, for example, Azure Repos, Git, Bitbucket Cloud, or any other Git repository. In our
case, we will select GitHub (YAML). We need to select Authorize Azure Pipelines so that we
have the necessary permissions to access our repository:

Figure 11.3 – Select the GitHub repository

Containers and Continuous Deployment on Azure242

4. After adding your GitHub credentials, select your repository from the list.

5. In the Configure tab, select the Docker: Build and push an image to Azure Container
Registry task.

6. Select the subscription, then click on Continue.

7. You will be requested to connect to your Azure account. Once you're authenticated, select your
container registry. Enter an image name, then select Validate and configure, as presented in
the following figure:

Figure 11.4 – Configuring the building and deploying of an image to Azure Container Registry

When Azure Pipelines builds your pipeline, it will create the connection to the Docker Registry
service so your pipeline will be able to push images to Azure Container Registry. It will generate,
in the end, a YAML file called azure-pipelines.yml that will define your pipeline.

8. Review your generated YAML pipeline and select Save and run:

Setting up continuous deployment for Docker with Azure DevOps and Azure Container Registry 243

Figure 11.5 – The azure-pipelines.yml file

In our YAML file, we have the following:

 � Variables that include the Container Registry connection, such as the image repository, the
container registry, and the tag

 � The VM image name, which is the OS environment

 � The stages, which include the jobs for the build and the different settings

In the following figure, we can see the azure-pipeline.yml file and the different settings
of Stages:

Figure 11.6 – Settings of the stages in a YAML file

Containers and Continuous Deployment on Azure244

In the settings .yml file of the stages, we have the following:

 � Docker@2: This task is used to build and deploy Docker containers.

 � command: This indicates what we need to do, that is, the feature to run. In our case, we will
use buildAndPush.

 � repository: This indicates the name of our selected repository.

 � dockerfile: This indicates the path of our Dockerfile.

 � containerRegistry: This indicates the name of the container registry connection
that we will use.

 � tags: We will specify which tags need to apply to our container image.

9. Add a message in Commit, then select Save and run. In this step, we will commit all changes
and the pipeline will be created.

The build job will start and will display Queued in the Status column. Click on the build and review
your Azure DevOps pipeline logs. You can see the successful build and deployment of an image to
Azure Container Registry:

Figure 11.7 – Build job in a running pipeline

Go to Azure Container Registry and in Repositories, under Services, you can check your image. After
setting up continuous deployment for Docker with Azure DevOps and Azure Container Registry,
we will see in the next section how we can set up continuous deployment for Windows containers
using Azure DevOps.

Continuous deployment for Windows containers with
Azure DevOps
In this section, we will deploy a containerized application to Azure App Service. The application is
using .NET Framework. We will use a Windows container and push it to an Azure Container Registry.
Next, we will deploy it to App Service.

Continuous deployment for Windows containers with Azure DevOps 245

In the following figure, we show how you can build and push an application using .NET Framework
to Azure Container Registry and App Service:

Figure 11.8 – Build and push an application to Azure Container

Registry and App Service using .NET Framework

Deploying to Azure Container Registry

We can follow the same steps presented previously to build and push an application to Azure
Container Registry.

We can use another method to create the service connection between our project in Azure DevOps
and Azure Container Registry using these steps:

1. Open your project in Azure DevOps and select project settings at the bottom of the page on
the left. Under Pipelines, select New Service connection to define and secure the connection
between the Azure subscription and your project in Azure DevOps using a service principal.
Click on the Create service connection button:

Containers and Continuous Deployment on Azure246

Figure 11.9 – Create a service connection between Azure DevOps and Azure services

2. A new dialog page will be displayed, requesting us to select a service connection from the list
to link our Azure account to our Azure DevOps account. Select Azure Resource Manager and
click on the Next button to continue the configuration:

Continuous deployment for Windows containers with Azure DevOps 247

Figure 11.10 – Configure the new service connection

3. On the next dialog page, select Service principal (automatic) and click on Next. Select the
subscription and the resource group, then enter a service connection. Select Save to finish
the configuration.

Important note
If we only need to connect our Azure Container Registry with our DevOps account, we can
select New Service connection to add a new connection link. Then, select Docker Registry and
Azure Container Registry. Fill in all the parameters and select Save to confirm the connection.

Containers and Continuous Deployment on Azure248

Figure 11.11 – Create a new Docker Registry service connection

4. Create a build pipeline by following the same steps as in the previous section. When the YAML
file is generated, review it. Add variables that are used only after the creation of the pipeline.
Click on Variables, then select Add variable and add all these variables:

 � imageRepository: your-image-name

 � containerRegistry: 'your-registry-name.azurecr.io'

 � applicationName: your-app-name

Continuous deployment for Windows containers with Azure DevOps 249

5. Once the variables are saved, we will update vmImageName in the YAML file. Replace the default
value, 'ubuntu-latest', with 'windows-latest'. We will also add buildContext
after containerRegistry, as presented in the following screenshot, to make sure that all
required application files are being copied over to the image filesystem. If we don’t add this
line, we will get an error indicating that the path inside of our Dockerfile build can’t be found:

Figure 11.12 – Pipeline YAML for Container Registry

6. Select Save and run to start your pipeline build.

7. Once your image is pushed to the registry, push your container to App Service. Your App
Service instance should be created.

In the next section, we will deploy the application to Azure App Service by creating a new release pipeline.

Deploying to Azure App Service

To deploy our application to Azure App Service, we will create a new release pipeline.

To create a new release pipeline, follow these steps:

1. From the dashboard, select Pipelines and then Releases.

2. Select New Pipeline, and then select Empty job, as presented in the following figure:

Containers and Continuous Deployment on Azure250

Figure 11.13 – Create a pipeline release in Azure DevOps

3. Add a new Azure Web App for Containers task to our stage and we will select Azure App
for Containers:

Figure 11.14 – Add a new task to the stage

Continuous deployment for Windows containers with Azure DevOps 251

4. Select the subscription and the application name and specify the fully qualified container image
name. If you have a multi-container image, provide the names of them all in the Image name
input. If you use a docker-compose file, add the path in the Configuration File input and
select Save:

Figure 11.15 – Configure Azure Web App on Container Deploy

Important note
You will need to enable the admin user for your Container Registry. Select Access keys under
Settings for your Container Registry and then select Enabled for Admin user. This option
enables the use of the registry name as the username and the admin user access key as the
password to allow Docker to log in to your Container Registry.

Containers and Continuous Deployment on Azure252

Figure 11.16 – Enable Admin user in Azure Container Registry

5. On the Pipeline tab, select Add an artifact:

Figure 11.17 – Add an artifact

Continuous deployment for Windows containers with Azure DevOps 253

6. In Add an artifact, select Build for Source type, then select the project, the source, the default
version, and select Add:

Figure 11.18 – Build source type

7. Enable Continuous deployment trigger and save all the modifications:

Figure 11.19 – Enable Continuous deployment trigger

Containers and Continuous Deployment on Azure254

8. Select Create release, add the stage and update the version for the artifact sources for this
release. Then, click on the Create button:

Figure 11.20 – Configure a release

We are ready to again push our local code to our repository to start the pipelines. We can add approval
requests before updating App Service with the latest version.

We will see in the next section how we can integrate Docker Hub with the CI/CD pipeline.

Integrating Docker Hub with the CI/CD pipeline
In this section, we will set up a CI pipeline for building containerized applications. We will build and
publish Docker images to Docker Hub:

Figure 11.21 – Scenario: Build and push a Docker image to Docker Hub using Azure DevOps pipelines

Integrating Docker Hub with the CI/CD pipeline 255

We will start by adding a service connection to the Azure DevOps project and follow the same steps
presented in the previous section.

In Service connections, add a new service connection to link Azure DevOps with the Docker Hub
account. Select Docker Registry, and in Registry type, check Docker Hub. Complete the different
settings, select Verify and Save:

Figure 11.22 – Link Azure DevOps with Docker Hub Registry

We will follow the same steps as previously to create a build pipeline. Follow these steps:

1. To proceed with configuring your pipeline, select your repository and in the Configure tab,
select Docker- Build a Docker Image. Then, select Validate and configure.

2. Add the following variables:

 � imageRepository: your-image-name

 � containerRegistry: 'your-docker-hub-registry-name'

 � applicationName: your-app-name

Containers and Continuous Deployment on Azure256

Figure 11.23 – Build pipeline to Docker Hub

3. Add a task to your pipeline; select Docker, then, select the connection service under Container
registry, add the name of the repository, and select Add to save the task:

Figure 11.24 – Update a YAML file with the Docker Hub connection service

4. Select Save and Run after updating your YAML file to start your build pipeline. You can verify
your repository in Docker Hub.

Integrating Docker Hub with the CI/CD pipeline 257

If you use an orchestrator, you can configure the deployment to Azure Kubernetes Service by editing
the release pipeline:

Figure 11.25 – Scenario: Build and push a Docker image to Azure

Kubernetes Service using Azure DevOps pipelines

We will add a new task to our stage. We can select Deploy to Kubernetes and configure the connection
to the Azure Kubernetes Service resource, or we can use Helm tool installer, Kubectl, Package and
deploy Helm charts. It depends on the application we‘re using:

Figure 11.26 – Tasks in build pipelines to deploy Azure Kubernetes Service

Containers and Continuous Deployment on Azure258

We will save and run our release pipeline and our application will be pushed to Azure Kubernetes Service.

Summary
In this chapter, we learned about the build process and the deployment of a container using Azure
DevOps. We pushed source code from GitHub to an Azure repository and configured the build
pipeline to push our application to Azure Container Registry or Docker Hub for Linux and Windows
environments. We created a release pipeline and published our application to Web App for Containers.

This book began with a basic definition of serverless and event-driven architecture and database as
a service. We also worked through the different services in Azure, namely, Azure API Management
using gateway pattern, event-driven architecture, Azure Event Grid, Azure Event Hubs, Azure message
queues, function as a service using Azure Functions, and the database-oriented cloud. At every step
along the way, you learned about creating, importing, and managing APIs and Service Fabric in
Azure, and how to ensure CI/CD in Azure to fully automate the software delivery process (the build
and release process).

Now, at the end of this book, you’ll be able to build and deploy cloud-oriented applications using APIs,
serverless architecture, Service Fabric, Azure Functions, and event-grid architecture.

Assessments

Chapter 1
1. What are the three key components of event-driven architecture?

The key components of event-driven architecture are as follows:

 � Event producers: These generate a stream of events

 � Event routers: These manage event delivery between producers and consumers

 � Event consumers: These listen to the events

For more details, see the Understanding event-driven architecture section.

2. What are the different Azure database services?

The different Azure database services are as follows: Azure SQL Database, Azure SQL Managed
Instance, SQL Server on Azure Virtual Machines, Azure Database for PostgreSQL, Azure
Database for MySQL, Azure Database for MariaDB, Azure Cache for Redis, Azure Database
Migration Service, and Azure Managed Instance for Apache Cassandra.

For more details, see the Exploring cloud databases section.

Chapter 3
• Which packages need to be added to read messages from a Service Bus queue using a .NET

Core application?

Azure.Messaging.ServiceBus. For more details, see Exercise 3 – publishing messages
to a Service Bus queue using a .NET Core application.

Chapter 4
1. Do we need to add more packages for Durable Functions?

We need to add Microsoft.Azure.WebJobs.Extensions.DurableTask

2. What are durable functions in Azure?

Durable Functions is an extension of Azure Functions that lets you write stateful functions in a
serverless compute environment. For more details, see the Developing durable functions section.

Assessments260

Chapter 5
1. What is an Azure Service Fabric cluster?

An Azure Service Fabric cluster is a network-connected set of virtual machines (VMs) in
which your microservices are deployed and managed. For more details, see the Clusters and
nodes section.

2. What is the difference between Kubernetes and Service Fabric?

The main difference between Kubernetes and Service Fabric is that Service Fabric has three
mechanisms to deploy and run applications: a propriety programming model that you can
optionally use in your applications, the use of containers, and the use of any secure built with
any platform and any language, with no modification required at all. For more details, see the
The differences between Service Fabric and Kubernetes section.

3. How do we deploy a containerized application on Azure Service Fabric?

To deploy a containerized application on Azure Service Fabric, we can use Visual Studio 2022
and select the Service Fabric template, and then we can select the container. For more details,
you can see the Building and executing a Docker container in Service Fabric section.

Chapter 7
1. What is Azure SQL Database?

Azure SQL Database is a hosted SQL database service in Azure. It runs on the SQL Server
database engine. There are some important differences between Azure SQL Database and the
traditional SQL Server. But most database administrators using SQL Server are able to migrate
to Azure SQL Database. Azure SQL Database makes it extremely easy to scale a database. We
are able to replicate a database in one or more locations around the world, which can improve
performance if your application is used worldwide.

2. How do we connect Azure SQL Database to an ASP.NET app?

To connect Azure SQL Database to an ASP.NET app, we start by creating and configuring
the database connection, and we use Visual Studio 2022 and SQL Server Object Explorer. For
more details about the different steps, see Exercise 4 – connecting Azure SQL Database to an
ASP.NET app.

Chapter 8
1. What are the common uses of file storage?

Azure Files can be used to completely replace traditional on-premises file servers or Network-
Attached Storage (NAS) devices. Popular operating systems, such as Windows, macOS, and
Linux, can directly mount Azure file shares wherever they are in any location. Azure Files makes

Chapter 9 261

it easy to lift and shift applications to the cloud that expect a file share to store file applications
or user data. Azure file shares can also be replicated with Azure File Sync to Windows servers,
either on-premises or on the cloud. To ensure performance and distributed caching of data
where it is used, shared application settings are stored, for example, in configuration files, and
diagnostic data (such as logs, metrics, and crash dumps) in a shared location. We store the
tools and utilities needed to develop or administer Azure virtual machines or cloud services.
That has covered all the common use cases of file storage for Azure Files.

2. When do you use Azure files versus blobs?

You can use Azure files to lift and shift an application to the cloud, which already uses the native
filesystem APIs to share data between it and other applications running in Azure. You want to
store development and debugging tools that need to be accessed from many virtual machines.
Azure blobs, on the other hand, can be used if you want your application to support streaming
and random-access scenarios and you want to be able to access application data from anywhere.
There are a few other distinguishing features on when to select Azure files over Azure blobs.
Azure files are true directory objects, while Azure blobs are a flat namespace. Azure files can
be accessed through file shares. However, Azure blobs are accessed through a container. Azure
files provide shared access across multiple virtual machines, while Azure disks are exclusive to
a single virtual machine. For more details, see the When to use Azure files versus blobs section.

Chapter 9
1. Before creating a container, which Azure Cosmos DB SQL API resource should you create first?

We will start by adding a new database and a container. After, we will add data to the created
database. We will query the data and, in the end, use the SDK of Cosmos DB to connect to the
Azure Cosmos DB SQL API while using C# as the programming language. Then, we will add
a new database and a new container.

Chapter 10
1. What is the difference between Azure Databricks and ADF?

Azure Data Factory (ADF) is an orchestration tool for data integration services to carry out
ETL workflows and orchestrate data transmission at scale. Azure Databricks provides a single
collaboration platform for data scientists and engineers to execute ETL and create machine
learning models with visualization dashboards.

2. How do we create an ADF instance using the Azure portal?

To create an ADF instance in the Azure portal, we will select Data Factory from the resources
in the Azure portal, and then, we will follow the different steps mentioned in the Creating an
ADF using the Azure portal section.

Index

Symbols
401 Access Denied response 25

A
ADF components 218

activities 218
control flow 219
datasets 218
integration runtime 219
linked services 218
mapping data flows 219
parameters 219
pipeline runs or pipeline execution 219
pipelines 218
trigger 219
variables 219

Advanced Message Queuing
Protocol (AMQP) 5

API Gateway pattern 12
advantages 12
definition 12
disadvantages 14
use case 13

API life cycle
consumption phase 5
control phase 5
creation phase 5

API Management
administrators group 20
API gateway 16
API, using 15
backend API, importing 33-36
components 14, 15
creating, with Azure portal 16, 17
developer portal 17, 18
developers group 20
exploring 14
group 20
guests group 20
OpenAPI schema, importing

for proxying 39, 40
policies 21
products 20, 21
products, creating 21, 22
products, publishing 22, 23
public API, proxying 39
user 20
user accounts, managing 18-20

Index264

API Management instance
creating 27
creating, with Azure Cloud Shell 30
creating, with Azure Portal 28-30

API security 24
certificate authorization policies 26, 27
certificates, using 25, 26
client certificates, accepting in

consumption tier 26
subscription key, using 24, 25

append blobs 170
ASP.NET Core 47
ASP.NET Core application

deploying, to Azure Service Fabric 131, 132
asynchronous HTTP APIs 104, 105
Azure

non-relational data concepts,
exploring 138, 139

PaaS options, for deploying SQL Server 143
relational data concepts, exploring 136, 137

Azure Analysis Services 140
exploring 235

Azure App Service 108
containerized application

deployment 249-254
Azure Blob Storage 211

client library, for .NET 177-179
exploring 169-177

Azure Cache for Redis 9
Azure CDN 173
Azure CLI 162

installation link 112
Azure Cloud Shell 30
Azure Container Apps 108
Azure Container Instances 108
Azure Container Registry

containerized application
deployment 245-249

for setting up continuous deployment
for Docker 239, 240

Azure Cosmos DB account
creating, with Azure portal 187-192

Azure Cosmos DB SQL API
connecting, with Azure Cosmos DB 205-209
connecting, with SDK 200-205

Azure Cosmos DB SQL API account
container, adding 193-196
creating 193
data, adding to database 196, 197
database, adding 193-196
data, querying 197-199

Azure Database for MariaDB 9
Azure Database for MySQL 8
Azure Database for PostgreSQL 8
Azure Database Migration Service 9
Azure Databricks 140

components 230
exploring 229
features 229, 230
URL 229
workspace, creating 230-235

Azure Data Factory (ADF) 139, 140
creating, with Azure portal 219-221
dataset, creating 223, 224
exploring 217
linked service, creating 221-223
pipeline, creating 224-229
reference link 229

Azure Data Lake 140
Azure Data Lake instance

creating, with Azure CLI 215-217
creating, with Azure Portal 214, 215

Azure Data Lake Storage
exploring 211, 212

Azure Data Lake Storage Gen2 212
ingestion phase 213

Index 265

Azure data services
for modern data warehouses 140

Azure DevOps
for setting up continuous deployment

for Docker 239, 240
Azure Disks Storage 211

exploring 179
Azure Event Grid 43, 44

deploying, with Web App 46, 47
exploring 43

Azure Event Hub 44
exploring 43

Azure Files Storage 211
exploring 180
files, adding in Azure portal 180-182
uses 180
versus blobs 183

Azure free account, for building cloud
reference link 83

Azure Function instance
creating, with Visual Studio Code 92-94
creating, with Visual Studio 2022 83
prerequisites 83

Azure Functions 43
binding 81
developing 82
elements 82
exploring 79
publishing, to Azure 88-91
triggers 80
used, for order processing scenario 81, 82

Azure Functions app
creating, in Azure portal 94-101

Azure HDInsight 140
Azure Kubernetes Service 108
Azure Managed Disks 179
Azure Managed Instance for

Apache Cassandra 9

Azure message queues
exploring 56
types 56

Azure portal
Azure Cosmos DB account,

creating with 187-192
used, for creating topic 69
using 56

Azure Queue Storage 56, 211
Azure Service Bus namespace

creating 56
creating, with Azure CLI 60, 61
creating, with Azure portal 56-60

Azure Service Bus queue
Azure CLI, using 60
creating 56
creating, with Azure CLI 60, 61
creating, with Azure portal 56-60
messages, publishing with .NET

Core application 61-66
messages, reading with .NET

Core application 66-69
Azure Service Fabric 108, 109

clusters 110, 111
development environment 111-115
Docker container, building 132, 133
Docker container, executing 132, 133
download link 112
exploring 108
nodes 110, 111
versus Kubernetes 111

Azure Service Fabric cluster
creating, with Azure CLI 120, 121
creating, with Azure portal 115-120
custom autoscaling 123
manual scaling 121-123
scaling 121
scaling, programmatically 124

Index266

Azure Service Fabric, execution environment
on-premises environment 111
public cloud 111
public cloud, with other providers 111

Azure SQL Database 8, 137, 144
connecting, to ASP.NET app 156
database connection, creating 156-159
options 137

Azure SQL Database elastic pools
deploying 152-155

Azure SQL Database instance 145, 146
Azure SQL Managed Instance 8, 137, 144
Azure Storage account 161

creating 162-164
Azure Synapse Analytics 140, 229

exploring 235
Azure Synapse Studio 235
Azure Table Storage 211

exploring 164, 165
table, creating in Azure portal 166-169

Azure WebJobs 79

B
backend API

API Management instance, creating 27
backend settings, configuring 36-38
creating 27
deploying 27
importing 31
importing, to API Management 33-36
testing 38, 39

big data solutions
phases 213

bindings 81
examples 81

Blob (binary large object) 169

Blob storage
use case 212

block blobs 170

C
Canonical Name (CNAME) 173
certificate

authorization policies 26
for securing APIs 25
properties 26

CI/CD pipeline
Docker Hub, integrating with 254-257

clients 5
cloud databases

exploring 8, 9
cluster 110
Command-Line Interface (CLI) 30
Common Language Runtime (CLR) 201
Container as a Service (CaaS) 108
containerized application

deploying, to Azure App Service 249-254
deploying, to Azure Container

Registry 245-249
continuous deployment

for Windows containers, with
Azure DevOps 244

setting up, for Docker with Azure DevOps
and Azure Container Registry 239, 240

Cosmos DB SQL API
exploring 192, 193

custom domain 26

D
database as a service (DBaaS) 8
database management system (DBMS) 8

Index 267

database transaction unit (DTU)
pricing model 144

data classification 135
data concepts 135
data lake 212
data warehouse analytics

concepts 139
exploring 139

data warehousing 139
Docker container

building, in Azure Service Fabric 132, 133
executing, in Azure Service Fabric 132, 133

Docker Desktop
installation link 112

Docker Hub
integrating, with CI/CD pipeline 254-257

durable functions 101
asynchronous HTTP APIs 104, 105
developing 101
fan-out, fan-in pattern 104
function chaining pattern 103
human interaction pattern 106
monitor pattern 105
orchestrator function,

implementing 102, 103

E
EparaMed 81
event consumers 6
event-driven architecture 6

event consumers 6
event producers 6
event routers 6

Event Grid topic 45
creating 45
subscription, creating 47-50

event producers 6
event routers 6
event streaming

versus publisher/subscriber model 7

F
fan-out, fan-in pattern 104
function app

creating, methods 83
Function as a Service (FaaS) 108
function chaining pattern 103

H
hard disk drives (HDDs) 179
human interaction pattern 106

I
Infrastructure as a service (IaaS) 144
integrated development

environment (IDE) 50, 83
Internet of Things (IoT) 85

J
JavaScript Object Notation (JSON) 136

K
Kubernetes

versus Azure Service Fabric 111

L
Logic Apps 43

Index268

M
messages

receiving, from subscription 75
receiving, from topic 69
sending, to topic 69-75

Microsoft Purview 140
minimal Web API 31

benefits 31
creating, with Visual Studio 2022 32, 33

model-view-controller (MVC) 31
monitor pattern 105

N
.NET App

events, publishing 53-55
Program class, modifying for Event

Grid connection 52, 53
publishing, to Azure Event Grid events 44
subscribing, to Azure Event Grid events 44

.NET Console project
creating 50
creating, with Visual Studio Code 50, 51
Visual Studio Code 2022, using 52

.NET Core application
messages, publishing to Azure

Service Bus queue 61-66
messages, reading from Azure

Service Bus queue 66-69
.NET SDKs for Visual Studio

download link 92
.NET Service Fabric application

creating 124-128
deploying, in local cluster with

Visual Studio 129, 130
Network Attached Storage

(NAS) devices 180

Network File System (NFS) protocol 180
non-relational databases (NoSQL) 8
NoSQL databases 185

document 186
graph 186
key-value store 186
table-style 186

O
object-oriented programming

(OOP) design 12
OpenAPI schema

importing 39, 40
Open Dat-based queries (Odata-

based queries) 165
Optimized Row Columnar (ORC) 213
orchestrator function

implementing 102, 103
order processing scenario

Azure Functions, using 81, 82

P
page blobs 170
pipeline

creating 240-244
Plain Old CLR Object (POCOs) 201
Platform as a Service (PaaS) 108, 137, 217
polyglot persistence 211
Power BI 141
Power BI Desktop 141

URL 141
public API

proxying, with API Management 39
publisher/subscriber model

versus event streaming 7

Index 269

Q
Query Editor 152
Queue Storage 43

R
relational database 8
relational database management

system (RDBMS) 143
relational data concepts

exploring 136, 137
REpresentational State Transfer

(REST) API interface 180
request units per second (RU/s) 190
RESTful 6

S
SDK

Azure Cosmos DB SQL API,
connecting with 200-205

Secure Sockets Layer (SSL) 13
semi-structured data 136
serverless architecture 4

API definition 4, 5
API life cycle 5
APIs role 5
API types 5

Server Message Block (SMB) protocol 180
servers 5
service bus queue 82
Service Fabric 108
SignalR 47
Simple Object Access Protocol (SOAP) 5
single SQL database

deploying 146-152

Software as a Service (SaaS) 55, 141, 152
solid-state drives (SSDs) 179
SQL Managed Instance 144

deploying 155
SQL Server Agent 144
SQL Server Integration Services

(SSIS) packages 218
SQL Server on Azure Virtual Machines 8
Stock-Keeping Unit (SKU) 31
structured data 136
Structured Query Language (SQL) 8
subscription key 24

for API calling 25
subscription rules 82

T
topic

creating, with Azure portal 69
messages, receiving 69
messages, receiving from subscription 75
messages, sending 69-75
subscription, creating 70, 71

topic subscription rules 82
transparent data encryption (TDE) 150
Transport Layer Security (TLS) 25
triggers 80

Blob Storage 80
HTTP 80
queue in service bus 80
timer 80

U
unstructured data (semi-structured) 136

Index270

V
virtual machines (VMs) 110
Visual Studio 83

download link 112
used, for Service Fabric application

deployment in local cluster 129, 130
Visual Studio 2022

minimal Web API, creating with 32, 33
used, for creating Azure

Functions instance 83
Visual Studio Azure Functions template

local project, creating 84-88
Visual Studio Code 83

used, for creating Azure Function
instance 92-94

used, for creating .NET Console project 50
Visual Studio Code 2022

used, for creating .NET Console
project 51, 52

W
Web App

creating, to deploy Azure Event
Grid viewer 46, 47

wide-column databases 186

Y
YAML file 242

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packt.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Azure for Developers - Second Edition

Kamil Mrzygłód

ISBN: 978-1-80324-009-1

• Identify the Azure services that can help you get the results you need

• Implement PaaS components – Azure App Service, Azure SQL, Traffic Manager, CDN,
Notification Hubs, and Azure Cognitive Search

• Work with serverless components

• Integrate applications with storage

• Put together messaging components (Event Hubs, Service Bus, and Azure Queue Storage)

• Use Application Insights to create complete monitoring solutions

• Secure solutions using Azure RBAC and manage identities

• Develop fast and scalable cloud applications

https://packt.link/9781803240091

273Other Books You May Enjoy

The Azure Cloud Native Architecture Mapbook

Stéphane Eyskens, Ed Price

ISBN: 978-1-80056-232-5

• Gain overarching architectural knowledge of the Microsoft Azure cloud platform

• Explore the possibilities of building a full Azure solution by considering different architectural
perspectives

• Implement best practices for architecting and deploying Azure infrastructure

• Review different patterns for building a distributed application with ecosystem frameworks
and solutions

• Get to grips with cloud-native concepts using containerized workloads

• Work with AKS (Azure Kubernetes Service) and use it with service mesh technologies to design
a microservices hosting platform

https://packt.link/9781800562325

274

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished A Developer’s Guide to Building Resilient Cloud Applications with Azure, we’d
love to hear your thoughts! If you purchased the book from Amazon, please click here to go
straight to the Amazon review page for this book and share your feedback or leave a
review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1804611719
https://packt.link/r/1804611719

275

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?
Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804611715

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804611715

	Cover
	FM
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1:
Building Cloud-Oriented
Apps Using Patterns
and Technologies
	Chapter 1: Introduction to Serverless Architecture, Event-Driven Architecture, and
Cloud Databases
	Understanding serverless architecture
	API definition
	The API life cycle
	Role of an API
	API types

	Understanding event-driven architecture
	Exploring cloud databases
	Summary
	Further reading
	Questions

	Chapter 2: API Management –
Import, Manage, and Publish Your First API
	Technical requirements
	The API Gateway pattern
	Definition
	Use case

	Exploring the API Management service
	API Management components
	Products

	Securing the API
	Subscriptions and keys
	The process of calling an API with the subscription key
	Securing APIs by using certificates
	Accepting client certificates in the consumption tier
	Certificate authorization policies

	Exercise 1 – creating a backend API and deploying APIs
	Creating an API Management instance
	Importing an API
	Configuring the backend settings
	Testing the API

	Exercise 2 – using Azure API Management to proxy a public API
	Importing an OpenAPI schema for proxying

	Summary

	Chapter 3: Developing Event-Based and Message-Based Solutions
	Introduction
	Exploring Event Grid and Azure Event Hubs
	Event Grid
	Event Hubs

	Exercise 1 – publishing and subscribing from a .NET app to Event Grid events
	Creating an Event Grid topic
	Creating a web app to deploy the Azure Event Grid viewer
	Creating an Event Grid subscription
	Create a .NET Console project
	Making some modifications to the Program class to be able to connect to Event Grid
	Publishing new events

	Exploring Azure message queues
	Exercise 2 – creating an Azure Service Bus namespace and a queue
	Using the Azure portal
	Using the Azure CLI

	Exercise 3 – publishing messages to a Service Bus queue using a .NET Core application
	Exercise 4 – reading messages from a Service Bus queue using a .NET Core application
	Exercise 5 – sending and receiving messages to and from a topic
	Creating a topic using the Azure portal
	Creating a subscription to the topic
	Sending messages to the topic

	Summary
	Question

	Part 2:
Connecting Your Application with Azure Databases
	Chapter 4: Creating and Deploying a Function App in Azure
	Exploring Azure Functions
	Triggers
	Bindings
	Order processing scenario using Azure Functions

	Developing Azure functions
	Azure Functions’ development
	Creating an Azure Functions instance by using Visual Studio 2022
	Creating an Azure Functions instance by using Visual Studio Code
	Creating an Azure Functions app in the Azure portal

	Developing durable functions
	Introduction to durable functions
	Implementing an orchestrator function
	Function chaining
	Fan-out, fan-in
	Asynchronous HTTP APIs
	Monitor pattern
	Human interaction

	Summary
	Questions

	Chapter 5: Develop an Azure Service Fabric Distributed Application
	Exploring Azure Service Fabric
	Definition
	Clusters and nodes
	The differences between Service Fabric and Kubernetes

	The Azure Service Fabric development environment
	Exercise 1 – creating a Service Fabric cluster using the Azure portal
	Exercise 2 – creating a Service Fabric cluster using the Azure CLI

	Exercise 3 – scaling an Azure Service Fabric cluster
	Manual scaling
	Custom autoscaling
	Coding your scaling

	Exercise 4 – creating a .NET Service Fabric application
	Creating a Service Fabric application
	Deploying the application in a local cluster using Visual Studio

	Exercise 5 – deploying an app to a Service Fabric managed cluster and containers
	Deploying an ASP.NET Core application to Azure Service Fabric
	Building and executing a Docker container in Service Fabric

	Summary
	Questions

	Chapter 6: Introduction to
Application Data
	An overview of data classification and data concepts
	Exploring relational data concepts in Azure
	Exploring non-relational data concepts in Azure
	Exploring modern data warehouse analytics
	Exploring data warehousing concepts
	Azure data services for modern data warehouses

	Getting started building with Power BI
	Power BI Desktop

	Summary

	Chapter 7: Working with
Azure SQL Database
	Exploring PaaS options for deploying SQL Server in Azure
	Azure SQL Database
	Azure SQL Managed Instance
	Creating an Azure SQL Database instance

	Exercise 1 – deploying a single SQL database
	Exercise 2 – deploying Azure SQL Database elastic pools
	Exercise 3 – deploying SQL Managed Instance
	Exercise 4 – connecting Azure SQL Database to
an ASP.NET app
	Creating and configuring the database connection

	Summary
	Further reading
	Questions

	Chapter 8: Working with Azure Storage
	Azure Storage account
	Exploring Azure Table Storage
	Creating a table in Azure Table Storage in the Azure portal

	Exploring Azure Blob Storage
	Azure Blob Storage client library for .NET

	Exploring Azure Disk Storage
	Exploring Azure Files
	The common uses of file storage
	Adding Azure Files in the Azure portal
	When to use Azure files versus blobs

	Summary
	Further reading
	Questions

	Chapter 9: Working with Azure Cosmos DB to Manage Database Services
	NoSQL databases
	Exercise 1 – creating an Azure Cosmos DB account using the Azure portal
	Exploring the Cosmos DB SQL API
	Exercise 2 – creating an Azure Cosmos DB SQL API account
	Adding a new database and a new container
	Adding data to a database
	Querying data

	Exercise 3 – connecting to the Azure Cosmos DB SQL API with the SDK
	Exercise 3 – connecting Azure App Service with Azure Cosmos DB
	Summary
	Questions

	Chapter 10: Big Data Storage Overview
	Exploring Azure Data Lake Storage
	Creating an Azure Data Lake instance using the Azure portal
	Creating an Azure Data Lake instance using the Azure CLI

	Exploring Azure Data Factory
	ADF components
	Creating an ADF using the Azure portal

	Exploring Azure Databricks
	Azure Synapse Analytics
	Azure Databricks features
	Azure Databricks components
	Creating an Azure Databricks workspace

	Exploring Azure Synapse Analytics
	Exploring Azure Analysis Services
	Summary
	Further reading
	Questions

	Part 3:
Ensuring Continuous Integration and Continuous Container Deployment on Azure
	Chapter 11: Containers and Continuous Deployment on Azure
	Setting up continuous deployment for Docker with Azure DevOps and Azure Container Registry
	Creating the pipeline

	Continuous deployment for Windows containers with Azure DevOps
	Deploying to Azure Container Registry
	Deploying to Azure App Service

	Integrating Docker Hub with the CI/CD pipeline
	Summary

	Assessments
	Index
	Other Books You May Enjoy

